New Directions in Attack Tree Research: Catching up with Industrial Needs

  • Olga GadyatskayaEmail author
  • Rolando Trujillo-Rasua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10744)


Attack trees provide a systematic way of characterizing diverse system threats. Their strengths arise from the combination of an intuitive representation of possible attacks and availability of formal mathematical frameworks for analyzing them in a qualitative or a quantitative manner. Indeed, the mathematical frameworks have become a large focus of attack tree research. However, practical applications of attack trees in industry largely remain a tedious and error-prone exercise.

Recent research directions in attack trees, such as attack tree generation, attempt to close this gap and to improve the attack tree state-of-the-practice. In this position paper we outline the recurrent challenges in manual tree design within industry, and we overview the recent research results in attack trees that help the practitioners. For the challenges that have not yet been addressed by the community, we propose new promising research directions.



The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement number 318003 (TREsPASS) and from the Fonds National de la Recherche Luxembourg under grant C13/IS/5809105 (ADT2P).


  1. 1.
    Amenaza: Creating secure systems through attack tree modeling (2003).
  2. 2.
    ANSSI: EBIOS – Expression des Besoins et Identification des Objectifs de Securite (2010)Google Scholar
  3. 3.
    Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree modelling. In: Proceedings of SAFECOMP and Workshops, pp. 291–299 (2015)Google Scholar
  4. 4.
    Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer, Heidelberg (2015). Google Scholar
  5. 5.
    Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of attack-defence scenarios. In: Proceedings of CSF. IEEE (2016)Google Scholar
  6. 6.
    Audinot, M., Pinchinat, S.: On the soundness of attack trees. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 25–38. Springer, Cham (2016). CrossRefGoogle Scholar
  7. 7.
    Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of attack-defense trees. Int. J. Secure Softw. Eng. (IJSSE) 3(2), 1–35 (2012)CrossRefGoogle Scholar
  8. 8.
    Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  9. 9.
    Bundesamt fur Sicherheit in der Informationstechnik: IT-Grundschutz-Catalogues, 13th version (2013)Google Scholar
  10. 10.
    Buyens, K., De Win, B., Joosen, W.: Empirical and statistical analysis of risk analysis-driven techniques for threat management. In: Proceedings of ARES. IEEE (2007)Google Scholar
  11. 11.
    Buzan, T., Buzan, B.: The mind map book: how to use radiant thinking to maximize your brain’s untapped potential. Plume, reprint edn., Mar 1996.
  12. 12.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25(4), 12–16 (2005)CrossRefGoogle Scholar
  13. 13.
    Cleveland, W.: The elements of graphing data. AT&T Bell Laboratories (1994)Google Scholar
  14. 14.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3), 621–645 (2006)CrossRefGoogle Scholar
  15. 15.
    Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua, R.: Using attack-defense trees to analyze threats and countermeasures in an ATM: a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 326–334. Springer, Cham (2016). CrossRefGoogle Scholar
  16. 16.
    Gadyatskaya, O.: How to generate security cameras: towards defence generation for socio-technical systems. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 50–65. Springer, Cham (2016). CrossRefGoogle Scholar
  17. 17.
    Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). CrossRefGoogle Scholar
  18. 18.
    Gadyatskaya, O., Harpes, C., Mauw, S., Muller, C., Muller, S.: Bridging two worlds: reconciling practical risk assessment methodologies with theory of attack trees. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 80–93. Springer, Cham (2016). CrossRefGoogle Scholar
  19. 19.
    Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua, R.: Attack trees for practical security assessment: ranking of attack scenarios with ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 159–162. Springer, Cham (2016). CrossRefGoogle Scholar
  20. 20.
    Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.: Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). CrossRefGoogle Scholar
  21. 21.
    Ghani, H., Luna Garcia, J., Petkov, I., Suri, N.: User-centric security assessment of software configurations: a case study. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 196–212. Springer, Cham (2014). CrossRefGoogle Scholar
  22. 22.
    Hall, P., Heath, C., Coles-Kemp, L., Tanner, A.: Examining the contribution of critical visualisation to information security. In: Proceedings of NSPW. ACM (2015)Google Scholar
  23. 23.
    Hogganvik Grøndahl, I., Lund, M.S., Stølen, K.: Reducing the effort to comprehend risk models: text labels are often preferred over graphical means. Risk Anal. 31(11), 1813–1831 (2011)CrossRefGoogle Scholar
  24. 24.
    Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphical system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). CrossRefGoogle Scholar
  25. 25.
    Jhawar, R., Lounis, K., Mauw, S.: A stochastic framework for quantitative analysis of attack-defense trees. In: Barthe, G., Markatos, E., Samarati, P. (eds.) STM 2016. LNCS, vol. 9871, pp. 138–153. Springer, Cham (2016). CrossRefGoogle Scholar
  26. 26.
    Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). CrossRefGoogle Scholar
  27. 27.
    Karpati, P., Redda, Y., Opdahl, A., Sindre, G.: Comparing attack trees and misuse cases in an industrial setting. Inf. Softw. Technol. 56(3), 294–308 (2014)CrossRefGoogle Scholar
  28. 28.
    Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 49–64. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  29. 29.
    Kordy, B., Kordy, P., van den Boom, Y.: SPTool – equivalence checker for SAND attack trees. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A. (eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 105–113. Springer, Cham (2017). CrossRefGoogle Scholar
  30. 30.
    Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  31. 31.
    Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Log. Comput. 24(1), 55–87 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). CrossRefGoogle Scholar
  33. 33.
    Labunets, K., Massacci, F., Paci, F.: On the equivalence between graphical and tabular representations for security risk assessment. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 191–208. Springer, Cham (2017). CrossRefGoogle Scholar
  34. 34.
    Labunets, K., Massacci, F., Paci, F.: An experimental comparison of two risk-based security methods. In: Proceedings of ESEM. pp. 163–172. IEEE (2013)Google Scholar
  35. 35.
    Labunets, K., Massacci, F., Paci, F., Marczak, S., de Oliveira, F.: Model comprehension for security risk assessment: an empirical comparison of tabular vs. graphical representations. Empir. Softw. Eng. 22(6), 3017–3056 (2017)CrossRefGoogle Scholar
  36. 36.
    Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph. 18(9), 1520–1536 (2012)CrossRefGoogle Scholar
  37. 37.
    Li, E., Barendse, J., Brodbeck, F., Tanner, A.: From A to Z: developing a visual vocabulary for information security threat visualisation. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 102–118. Springer, Cham (2016). CrossRefGoogle Scholar
  38. 38.
    Matulevičius, R.: Model comprehension and stakeholder appropriateness of security risk-oriented modelling languages. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 332–347. Springer, Heidelberg (2014). Google Scholar
  39. 39.
    Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  40. 40.
    Microsoft: Threat modeling (2003).
  41. 41.
    Nielsen, J.: Evaluating information assurance control effectiveness on an air force supervisory control and data acquisition (SCADA) system. Technical report, DTIC Document (2011)Google Scholar
  42. 42.
    NIST: Special Publication 800-53 Revision 4. Security and privacy controls for federal information systems and organizations (2013).
  43. 43.
    Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse cases for security threat identification. Inf. Softw. Technol. 51(5), 916–932 (2009)CrossRefGoogle Scholar
  44. 44.
    OWASP: CISO AppSec guide: criteria for managing application security risks (2013)Google Scholar
  45. 45.
    Schweitzer, P.: Attack–defense trees. Ph.D. thesis, University of Luxembourg (2013)Google Scholar
  46. 46.
    Paul, S.: Towards automating the construction & maintenance of attack trees: a feasibility study. In: Proceedings of GraMSec (2014)Google Scholar
  47. 47.
    Paul, S., Vignon-Davillier, R.: Unifying traditional risk assessment approaches with attack trees. J. Inf. Secur. Appl. 19(3), 165–181 (2014)Google Scholar
  48. 48.
    Pieters, W., Barendse, J., Ford, M., Heath, C., Probst, C.W., Verbij, R.: The navigation metaphor in security economics. IEEE Secur. Priv. 14(3), 14–21 (2016)CrossRefGoogle Scholar
  49. 49.
    Pieters, W., Davarynejad, M.: Calculating adversarial risk from attack trees: control strength and probabilistic attackers. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 201–215. Springer, Cham (2015). Google Scholar
  50. 50.
    Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for supporting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 363–375. Springer, Cham (2015). Google Scholar
  51. 51.
    Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). CrossRefGoogle Scholar
  52. 52.
    Fredslund, M.P.: Automated synthesis of attack-defense trees using a library of component attacks. Master thesis, University of Luxembourg (2015)Google Scholar
  53. 53.
    Probst, C.W., Willemson, J., Pieters, W.: The attack navigator. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 1–17. Springer, Cham (2016). CrossRefGoogle Scholar
  54. 54.
    Purchase, H.C., Cohen, R.F., James, M.I.: An experimental study of the basis for graph drawing algorithms. J. Exp. Algorithmics (JEA) 2, 4 (1997)CrossRefGoogle Scholar
  55. 55.
    Roy, A., Kim, D.S., Trivedi, K.: Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees. In: Proceedings of DSN. IEEE (2012)Google Scholar
  56. 56.
    Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput. Sci. Coll. 23(4), 124–131 (2008)Google Scholar
  57. 57.
    Schneier, B.: Attack trees. Dr. Dobb’s J. Softw. Tools 24(12), 21–29 (1999). Google Scholar
  58. 58.
    Schneier, B.: Secrets and Lies: Digital Security in a Networked World. Wiley, New York (2011)Google Scholar
  59. 59.
    Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)Google Scholar
  60. 60.
    Sommerville, I., Ransom, J.: An empirical study of industrial requirements engineering process assessment and improvement. ACM Trans. Softw. Eng. Methodol. 14(1), 85–117 (2005)CrossRefGoogle Scholar
  61. 61.
    Staheli, D., Yu, T., Crouser, R.J., Damodaran, S., Nam, K., O’Gwynn, D., McKenna, S., Harrison, L.: Visualization evaluation for cyber security: trends and future directions. In: Proceedings of VizSec. ACM (2014)Google Scholar
  62. 62.
    Synopsis: How mapping the Ocean’s Eleven heist can make you better at application security testing (2015).
  63. 63.
    Ten, C.W., Liu, C.C., Govindarasu, M.: Vulnerability assessment of cybersecurity for scada systems using attack trees. In: Power Engineering Society General Meeting. IEEE (2007)Google Scholar
  64. 64.
    Tøndel, I.A., Jensen, J., Røstad, L.: Combining misuse cases with attack trees and security activity models. In: Proceedings of ARES. pp. 438–445. IEEE (2010)Google Scholar
  65. 65.
    TREsPASS: Technology-supported Risk Estimation by Predictive Assessment of Socio-technical Security, FP7 project, grant agreement 318003 (2012–2016).
  66. 66.
    Vigo, R., Nielson, F., Nielson., H.R.: Automated generation of attack trees. In: Proceedings of CSF. IEEE (2014)Google Scholar
  67. 67.
    Vose, D.: Risk Analysis: A Quantitative Guide. Wiley, New York (2008)zbMATHGoogle Scholar
  68. 68.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Heidelberg (2012). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.SnTUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations