Advertisement

Monitoring and Sedation in Regional Anesthesia

  • James Kim
  • Jeff Gadsden
Chapter

Abstract

Multiple monitors are employed during every general anesthesia case to prevent adverse outcomes. In regional anesthesia, monitors are specifically used to permit the safe administration of sedation (oximetry, blood pressure monitoring), as well as to prevent procedural-related catastrophes such as nerve injury, local anesthetic systemic toxicity (LAST), and pneumothorax. Each monitor has strengths and weaknesses, but when used in combination, they serve to act in a complementary manner. Ultrasonography permits the direct visualization of nerve or plexus targets, guides needle advancement, and aids in the confirmation of appropriate spread of injectate. Ultrasonography has also been demonstrated, likely via reduced volumes of injectate required, to significantly reduce the incidence of LAST. Nerve stimulation and injection pressure monitoring also work in tandem to prevent injurious needle-nerve contact. Finally, appropriate use of sedative drugs allows for the safe and effective practice of regional anesthesia techniques.

Keywords

Regional anesthesia Monitors Sedation Ultrasound Nerve stimulation Injection pressure monitoring BIS Cerebral oximetry 

References

  1. 1.
    Buhre W, Rossaint R. Perioperative management and monitoring in anaesthesia. Lancet. 2003;362:1839–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Auroy Y, Benhamou D, Péquignot F, Bovet M, Jougla E, Lienhart A. Mortality related to anaesthesia in France: analysis of deaths related to airway complications. Anaesthesia. 2009;64:366–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Li G, Warner M, Lang BH, Huang L, Sun LS. Epidemiology of anesthesia-related mortality in the United States, 1999-2005. Anesthesiology. 2009;110:759–65.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Di Gregorio G, Neal JM, Rosenquist RW, Weinberg GL. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979 to 2009. Reg Anesth Pain Med. 2010;35:181–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Heavner JE, Dryden CF, Sanghani V, Huemer G, Bessire A, Badgwell JM. Severe hypoxia enhances central nervous system and cardiovascular toxicity of bupivacaine in lightly anesthetized pigs. Anesthesiology. 1992;77:142–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosen MA, Thigpen JW, Shnider SM, Foutz SE, Levinson G, Koike M. Bupivacaine-induced cardiotoxicity in hypoxic and acidotic sheep. Anesth Analg. 1985;64:1089–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Martínez Navas A, DE LA Tabla González RO. Ultrasound-guided technique allowed early detection of intravascular injection during an infraclavicular brachial plexus block. Acta Anaesthesiol Scand. 2009;53:968–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Robards C, Clendenen S, Greengrass R. Intravascular injection during ultrasound-guided axillary block: negative aspiration can be misleading. Anesth Analg. 2008;107(5):1754.CrossRefPubMedGoogle Scholar
  9. 9.
    Mulroy MF, Norris MC, Liu SS. Safety steps for epidural injection of local anesthetics: review of the literature and recommendations. Anesth Analg. 1997;85:1346–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Mather LE, Copeland SE, Ladd LA. Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts. Reg Anesth Pain Med. 2005;30:553–66.PubMedGoogle Scholar
  11. 11.
    Hadzic A, Dilberovic F, Shah S, Kulenovic A, Kapur E, Zaciragic A, et al. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med. 2004;29:417–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Gebhard RE, Ghelber O, Warters RD, Pivalizza EG, Szmuk P. Local anesthetic injection-pressure monitoring during nerve blocks with the Compuflo Injection Pump; The Anesthesiology annual meeting 2006.Google Scholar
  13. 13.
    Moore JM, Liu SS, Neal JM. Premedication with fentanyl and midazolam decreases the reliability of intravenous lidocaine test dose. Anesth Analg. 1998;86:1015–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Owen MD, Gautier P, Hood DD. Can ropivacaine and levobupivacaine be used as test doses during regional anesthesia? Anesthesiology. 2004;100:922–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Mulroy MF, Neal JM, Mackey DC, Harrington BE. 2-Chloroprocaine and bupivacaine are unreliable indicators of intravascular injection in the premedicated patient. Reg Anesth Pain Med. 1998;23:9–13.CrossRefPubMedGoogle Scholar
  16. 16.
    McCartney CJL, Murphy DB, Iagounova A, Chan VWS. Intravenous ropivacaine bolus is a reliable marker of intravascular injection in premedicated healthy volunteers. Can J Anaesth. 2003;50:795–800.CrossRefPubMedGoogle Scholar
  17. 17.
    Wildsmith JA, Tucker GT, Cooper S, Scott DB, Covino BG. Plasma concentrations of local anaesthetics after interscalene brachial plexus block. Br J Anaesth. 1977;49:461–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Guinard JP, Mulroy MF, Carpenter RL, Knopes KD. Test doses: optimal epinephrine content with and without acute beta-adrenergic blockade. Anesthesiology. 1990;73:386–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Tanaka M, Sato M, Kimura T, Nishikawa T. The efficacy of simulated intravascular test dose in sedated patients. Anesth Analg. 2001;93:1612–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Guay J. The epidural test dose: a review. Anesth Analg. 2006;102:921–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Leighton BL, Norris MC, DeSimone CA, Rosko T, Gross JB. The air test as a clinically useful indicator of intravenously placed epidural catheters. Anesthesiology. 1990;73:610–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Selander D, Brattsand R, Lundborg G, Nordborg C, Olsson Y. Local anesthetics: importance of mode of application, concentration and adrenaline for the appearance of nerve lesions. An experimental study of axonal degeneration and barrier damage after intrafascicular injection or topical application of bupivacaine (Marcain). Acta Anaesthesiol Scand. 1979;23:127–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Fink BR, Aasheim GM, Levy BA. Neural pharmacokinetics of epinephrine. Anesthesiology. 1978;48:263–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Myers RR, Heckman HM. Effects of local anesthesia on nerve blood flow: studies using lidocaine with and without epinephrine. Anesthesiology. 1989;71:757–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Partridge BL. The effects of local anesthetics and epinephrine on rat sciatic nerve blood flow. Anesthesiology. 1991;75:243–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Liguori GA, Zayas VM, YaDeau JT, Kahn RL, Paroli L, Buschiazzo V, et al. Nerve localization techniques for interscalene brachial plexus blockade: a prospective, randomized comparison of mechanical paresthesia versus electrical stimulation. Anesth Analg. 2006;103:761–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Urmey WF, Stanton J. Inability to consistently elicit a motor response following sensory paresthesia during interscalene block administration. Anesthesiology. 2002;96:552–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Chan VWS, Brull R, McCartney CJL, Xu D, Abbas S, Shannon P. An ultrasonographic and histological study of intraneural injection and electrical stimulation in pigs. Anesth Analg. 2007;104:1281–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Perlas A, Niazi A, McCartney C, Chan V, Xu D, Abbas S. The sensitivity of motor response to nerve stimulation and paresthesia for nerve localization as evaluated by ultrasound. Reg Anesth Pain Med. 2006;31:445–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsai TP, Vuckovic I, Dilberovic F, Obhodzas M, Kapur E, Divanovic K-A, et al. Intensity of the stimulating current may not be a reliable indicator of intraneural needle placement. Reg Anesth Pain Med. 2008;33:207–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Voelckel WG, Klima G, Krismer AC, Haslinger C, Stadlbauer KH, Wenzel V, et al. Signs of inflammation after sciatic nerve block in pigs. Anesth Analg. 2005;101:1844–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Bigeleisen PE, Moayeri N, Groen GJ. Extraneural versus intraneural stimulation thresholds during ultrasound-guided supraclavicular block. Anesthesiology. 2009;110:1235–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Casati A, Baciarello M, Di Cianni S, Danelli G, De Marco G, Leone S, et al. Effects of ultrasound guidance on the minimum effective anaesthetic volume required to block the femoral nerve. Br J Anaesth. 2007;98:823–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Dhir S, Ganapathy S, Lindsay P, Athwal GS. Case report: ropivacaine neurotoxicity at clinical doses in interscalene brachial plexus block. Can J Anaesth. 2007;54:912–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Riazi S, Carmichael N, Awad I, Holtby RM, McCartney CJL. Effect of local anaesthetic volume (20 vs 5 ml) on the efficacy and respiratory consequences of ultrasound-guided interscalene brachial plexus block. Br J Anaesth. 2008;101:549–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Vandepitte C, Gautier P, Xu D, Salviz EA, Hadzic A. Effective volume of ropivacaine 0.75% through a catheter required for interscalene brachial plexus blockade. Anesthesiology. 2013;118:863–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Barrington MJ, Kluger R. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg Anesth Pain Med. 2013;38:289–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Altermatt FR, Cummings TJ, Auten KM, Baldwin MF, Belknap SW, Reynolds JD. Ultrasonographic appearance of intraneural injections in the porcine model. Reg Anesth Pain Med. 2010;35:203–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Lupu CM, Kiehl T-R, Chan VWS, El-Beheiry H, Madden M, Brull R. Nerve expansion seen on ultrasound predicts histologic but not functional nerve injury after intraneural injection in pigs. Reg Anesth Pain Med. 2010;35:132–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Krediet AC, Moayeri N, Bleys RL, Groen GJ. Intraneural or extraneural: diagnostic accuracy of ultrasound assessment for localizing low-volume injection. Reg Anesth Pain Med. 2014;39:409–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Bigeleisen PE. Nerve puncture and apparent intraneural injection during ultrasound-guided axillary block does not invariably result in neurologic injury. Anesthesiology. 2006;105:779–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Robards C, Hadzic A, Somasundaram L, Iwata T, Gadsden J, Xu D, et al. Intraneural injection with low-current stimulation during popliteal sciatic nerve block. Anesth Analg. 2009;109:673–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Hara K, Sakura S, Yokokawa N, Tadenuma S. Incidence and effects of unintentional intraneural injection during ultrasound-guided subgluteal sciatic nerve block. Reg Anesth Pain Med. 2012;37:289–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve. 1990;13:771–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327:361.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Barrington MJ, Watts SA, Gledhill SR, Thomas RD, Said SA, Snyder GL, et al. Preliminary results of the Australasian Regional Anaesthesia Collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med. 2009;34:534–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Abrahams MS, Aziz MF, Fu RF, Horn J-L. Ultrasound guidance compared with electrical neurostimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth. 2009;102:408–17.  https://doi.org/10.1093/bja/aen384.CrossRefPubMedGoogle Scholar
  48. 48.
    Loubert C, Williams SR, Hélie F, Arcand G. Complication during ultrasound-guided regional block: accidental intravascular injection of local anesthetic. Anesthesiology. 2008;108:759–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Schafhalter-Zoppoth I, Zeitz ID, Gray AT. Inadvertent femoral nerve impalement and intraneural injection visualized by ultrasound. Anesth Analg. 2004;99:627–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Koscielniak-Nielsen ZJ, Rasmussen H, Hesselbjerg L. Pneumothorax after an ultrasound-guided lateral sagittal infraclavicular block. Acta Anaesthesiol Scand. 2008;52:1176–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Bryan NA, Swenson JD, Greis PE, Burks RT. Indwelling interscalene catheter use in an outpatient setting for shoulder surgery: technique, efficacy, and complications. J Shoulder Elbow Surg. 2007;16:388–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Luyet C, Wipfli M, Eichenberger U, Farkas ZS. Performing ultrasound-guided supraclavicular blocks in the outpatient setting-an additional security measure. Reg Anesth Pain Med. 2010;35:224.CrossRefPubMedGoogle Scholar
  53. 53.
    Gadsden JC, Choi JJ, Lin E, Robinson A. Opening injection pressure consistently detects needle–nerve contact during ultrasound-guided interscalene brachial plexus block. Anesthesiology. 2014;120:1246–53.CrossRefPubMedGoogle Scholar
  54. 54.
    Gadsden J, Latmore M, Levine DM, Robinson A. High opening injection pressure is associated with needle-nerve and needle-fascia contact during femoral nerve block. Reg Anesth Pain Med. 2016;41:50–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Claudio R, Hadzic A, Shih H, Vloka JD, Castro J, Koscielniak-Nielsen Z, et al. Injection pressures by anesthesiologists during simulated peripheral nerve block. Reg Anesth Pain Med. 2004;29:201–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Theron PS, Mackay Z, Gonzalez JG, Donaldson N, Blanco R. An animal model of “syringe feel” during peripheral nerve block. Reg Anesth Pain Med. 2009;34:330–2.CrossRefPubMedGoogle Scholar
  57. 57.
    Tsui BCH, Knezevich MP, Pillay JJ. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study. Reg Anesth Pain Med. 2008;33:168–73.PubMedGoogle Scholar
  58. 58.
    Gadsden JC, Lindenmuth DM, Hadzic A, Xu D, Somasundarum L, Flisinski KA. Lumbar plexus block using high-pressure injection leads to contralateral and epidural spread. Anesthesiology. 2008;109:683–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Sieber FE, Zakriya KJ, Gottschalk A, Blute M-R, Lee HB, Rosenberg PB, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc. 2010;85:18–26.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Ben-David B, Vaida S, Gaitini L. The influence of high spinal anesthesia on sensitivity to midazolam sedation. Anesth Analg. 1995;81:525–8.PubMedGoogle Scholar
  61. 61.
    Shono A, Sakura S, Saito Y, Doi K, Nakatani T. Comparison of 1% and 2% lidocaine epidural anaesthesia combined with sevoflurane general anaesthesia utilizing a constant bispectral index. Br J Anaesth. 2003;91:825–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Doufas AG, Wadhwa A, Shah YM, Lin C-M, Haugh GS, Sessler DI. Block-dependent sedation during epidural anaesthesia is associated with delayed brainstem conduction. Br J Anaesth. 2004;93:228–34.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Nishikawa K, Hagiwara R, Nakamura K, Ishizeki J, Kubo K, Saito S, et al. The effects of the extent of spinal block on the BIS score and regional cerebral oxygen saturation in elderly patients: a prospective, randomized, and double-blinded study. J Clin Monit Comput. 2007;21:109–14.CrossRefPubMedGoogle Scholar
  64. 64.
    Park KS, Hur EJ, Han KW, Kil HY, Han TH. Bispectral index does not correlate with observer assessment of alertness and sedation scores during 0.5% bupivacaine epidural anesthesia with nitrous oxide sedation. Anesth Analg. 2006;103:385–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Friedman DJ, Parnes NZ, Zimmer Z, Higgins LD, Warner JJP. Prevalence of cerebrovascular events during shoulder surgery and association with patient position. Orthopedics. 2009;32(4). pii: orthosupersite.com/view.asp?rID=38058.
  66. 66.
    Pohl A, Cullen DJ. Cerebral ischemia during shoulder surgery in the upright position: a case series. J Clin Anesth. 2005;17:463–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS, et al. Cerebral oxygen desaturation events assessed by near-infrared spectroscopy during shoulder arthroscopy in the beach chair and lateral decubitus positions. Anesth Analg. 2010;111:496–505.CrossRefPubMedGoogle Scholar
  68. 68.
    Macario A, Weinger M, Carney S, Kim A. Which clinical anesthesia outcomes are important to avoid? The perspective of patients. Anesth Analg. 1999;89:652–8.PubMedGoogle Scholar
  69. 69.
    Gajraj NM, Sharma SK, Souter AJ, Pole Y, Sidawi JE. A survey of obstetric patients who refuse regional anaesthesia. Anaesthesia. 1995;50:740–1.CrossRefPubMedGoogle Scholar
  70. 70.
    Ironfield CM, Barrington MJ, Kluger R, Sites B. Are patients satisfied after peripheral nerve blockade? Results from an International Registry of Regional Anesthesia. Reg Anesth Pain Med. 2014;39:48–55.CrossRefPubMedGoogle Scholar
  71. 71.
    Jlala HA, Bedforth NM, Hardman JG. Anesthesiologists’ perception of patients’ anxiety under regional anesthesia. Local Reg Anesth. 2010;3:65–71.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Avramov MN, White PF. Use of alfentanil and propofol for outpatient monitored anesthesia care: determining the optimal dosing regimen. Anesth Analg. 1997;85:566–72.CrossRefPubMedGoogle Scholar
  73. 73.
    Pavlin DJ, Coda B, Shen DD, Tschanz J, Nguyen Q, Schaffer R, et al. Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology. 1996;84:23–37.CrossRefPubMedGoogle Scholar
  74. 74.
    Horikawa H, Tada T, Sakai M, Karube T, Ichiyanagi K. Effects of midazolam on the threshold of lidocaine-induced seizures in the dog–comparison with diazepam. J Anesth. 1990;4:265–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Kubulus C, Schmitt K, Albert N, Raddatz A, Gräber S, Kessler P, et al. Awake, sedated or anaesthetised for regional anaesthesia block placements? A retrospective registry analysis of acute complications and patient satisfaction in adults. Eur J Anaesthesiol. 2016;33:715–24.CrossRefPubMedGoogle Scholar
  76. 76.
    Martínez-Tellería A, Cano ME, Carlos R. [Paradoxical reaction to midazolam after its use as a sedative in regional anesthesia]. Rev Esp Anestesiol Reanim. 1992;39:379–80.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • James Kim
    • 1
  • Jeff Gadsden
    • 2
  1. 1.AnesthesiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of AnesthesiologyDuke University Medical CenterDurhamUSA

Personalised recommendations