Probiotic Dairy Products: Inventions Toward Ultramodern Production

Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Application of the latest approaches and protocols in probiotic research has resulted in significant advances over the last decade. These refer almost exclusively to the design of probiotic dairy products, mainly through the design of the probiotic culture incorporated. Several protocols have been developed for the assessment of probiotic potential through omic approaches, and many more are currently under development. In addition, through the improvement of our knowledge regarding the mechanisms that lead to infections and disorders, the genetic engineering of probiotic strains aiming at the delivery of bioactive molecules to specific cites was made possible. All these indicate that we are entering an exciting new era with great expectations.

Keywords

Probiotics Starter culture Selection Omics Genetic engineering 

References

  1. Abriouel H, Perez Montoro B, Casimiro-Soriguer CS et al (2017) Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence. Front Microbiol 8:891PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23:37–46PubMedCrossRefGoogle Scholar
  3. Arena MP, Capozzi V, Spano G et al (2017) The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 101:2641–2657PubMedCrossRefGoogle Scholar
  4. Bassaganya-Riera J, Viladomiu M, Pedragosa M, Simone C, Hontecillas R (2012) Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS ONE 7:1–8Google Scholar
  5. Bedani R, Vieira ADS, Rossi EA et al (2014) Tropical fruit pulps decreased probiotic survival to in vitro gastrointestinal stress in symbiotic soy yoghurt with okara during storage. LWT-Food Sci Technol 55:436–443CrossRefGoogle Scholar
  6. Bermudez-Humaran LG, Motta J-P, Aubry C et al (2015) Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Factories 14:26CrossRefGoogle Scholar
  7. Bielecka M, Majkowska A (2000) Effect of spray drying temperature of yoghurt on the survival of starter cultures, moisture content and sensoric properties of yoghurt powder. Nahrung/Food 44:257–260PubMedCrossRefGoogle Scholar
  8. Blaiotta G, Murru N, Di Cerbo A et al (2017) Commercially standardized process for probiotic “Italico” cheese production. LWT – Food Sci Technol 79:601–608CrossRefGoogle Scholar
  9. Bove P, Fiocco D, Gallone A et al (2012) Abiotic stress responses in lactic acid bacteria. In: Wong HC (ed) Stress response of foodborne microorganisms. Nova Publishers, New York, pp 355–403Google Scholar
  10. Bozanic R, Rogelj I, Tratni IJ (2001) Fermented acidophilus goat’s milk supplemented with inulin: comparison with cow’s milk. Milchwissenschaft 56:618–622Google Scholar
  11. Buriti FCA, Okazaki TY, Alegro JHA et al (2007) Effect of a probiotic mixed culture on texture profile and sensory performance of Minas fresh-cheeses in comparison with the traditional products. Arch Latinoam Nutr 57:179–185PubMedGoogle Scholar
  12. Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224–238PubMedCrossRefGoogle Scholar
  13. Carvalho AL, Cardoso FS, Bohn A (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microbiol 77:4189–4199PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chamcha V, Jones A, Quigley BR et al (2015) Oral immunization with a recombinant Lactococcus lactis–expressing HIV-1 antigen on group A Streptococcus pilus induces strong mucosal immunity in the gut. J Immunol 195:5025–5034PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chu H, Kang S, Ha S et al (2005) Lactobacillus acidophilus expressing recombinant K99 adhesive fimbriae has an inhibitory effect on adhesion of enterotoxigenic Escherichia coli. Microbiol Immunol 49:941–948PubMedCrossRefGoogle Scholar
  16. Coda R, Laner A, Trani A et al (2012) Yogurt-like beverages made of a mixture of cereals, soy and grape must: microbiology, texture, nutritional and sensory properties. Int J Food Microbiol 155:120–127PubMedCrossRefGoogle Scholar
  17. Cross ML, Ganner A, Teilab D et al (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42:173–180PubMedCrossRefGoogle Scholar
  18. Daliri EB-M, Lee BH (2015) New perspectives on probiotics in health and disease. Food Sci Human Wellness 4:56–65CrossRefGoogle Scholar
  19. Derkx PMF, Janzen T, Sorensen KI et al (2014) The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Factories 13:S5CrossRefGoogle Scholar
  20. Domingo JJS (2017) Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterol Hepatol 40:417–429CrossRefGoogle Scholar
  21. Donkor ON, Tsangalis D, Shah NP (2007) Viability of probiotic bacteria and concentrations of organic acids in commercial yoghurts during refrigerated storage. Food Aust 59:121–126Google Scholar
  22. Dore MP, Goni E, di Mario F (2015) Is there a role for probiotics in Helicobacter pylori therapy? Gastroenterol Clin N Am 44:565–575CrossRefGoogle Scholar
  23. dos Reis SA, da Conceicao LL, Siqueira NP et al (2017) Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res 37:1–19PubMedCrossRefGoogle Scholar
  24. Duan F, March JC (2008) Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling. Biotechnol Bioeng 101:128–134PubMedCrossRefGoogle Scholar
  25. Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. PNAS 107:11260–11264PubMedPubMedCentralCrossRefGoogle Scholar
  26. El-Nagga EA, Abd El–tawab YA (2012) Compositional characteristics of date syrup extracted by different methods in some fermented dairy products. Ann Agric Sci 57:29–36Google Scholar
  27. Ewaschuk JB, Walker JW, Diaz H et al (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136:1483–1487PubMedCrossRefGoogle Scholar
  28. Focareta A, Paton JC, Morona R et al (2006) A recombinant probiotic for treatment and prevention of cholera. Gastroenterology 130:1688–1695PubMedCrossRefGoogle Scholar
  29. Girardin M, Seidman EG (2011) Indications for the use of probiotics in gastrointestinal diseases. Dig Dis 29:574–587PubMedCrossRefGoogle Scholar
  30. Guo S, Yan W, McDonough SP et al (2015) The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 33:1586–1595PubMedCrossRefGoogle Scholar
  31. Guo H, Pan L, Li L et al (2017) Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J Food Sci 82:724–730PubMedCrossRefGoogle Scholar
  32. Hardy H, Harris J, Lyon E et al (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Forum Nutr 5:1869–1912Google Scholar
  33. Hatakka K, Holma R, El-Nezami H et al (2008) The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int J Food Microbiol 128:406–410PubMedCrossRefGoogle Scholar
  34. He B, Xu W, Santini PA et al (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunology 26:812–826Google Scholar
  35. Hill RH Jr, Caudill SP, Philen RM et al (1993) Contaminants in L-tryptophan associated with eosinophilia myalgia syndrome. Arch Environ Contam Toxicol 25:134–142PubMedCrossRefGoogle Scholar
  36. Holz C, Busjahn A, Mehling H et al (2015) Significant reduction in Helicobacter pylori load in humans with non-viable Lactobacillus reuteri DSM17648: a pilot study. Probiotics Antimicrob Proteins 7:91–100PubMedCrossRefGoogle Scholar
  37. Hosseini E, Grootaert C, Verstraete W et al (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69:245–258PubMedCrossRefGoogle Scholar
  38. Huang S, Cauty C, Dolivet A et al (2016) Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria. J Funct Foods 23:453–463CrossRefGoogle Scholar
  39. Huang S, Vignolles M-L, Chen XD et al (2017) Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci Technol 63:1–17CrossRefGoogle Scholar
  40. Hwanhlem N, Ivanova T, Biscola V et al (2017) Bacteriocin producing Enterococcus faecalis isolated from chicken gastrointestinal tract originating from Phitsanulok, Thailand: isolation, screening, safety evaluation and probiotic properties. Food Control 78:187–195CrossRefGoogle Scholar
  41. Ishimwe N, Daliri E, Lee B et al (2015) The perspective on cholesterol-lowering mechanisms of probiotics. Mol Nutr Food Res 59:94–105PubMedCrossRefGoogle Scholar
  42. Jensen GS, Benson KF, Carter SG et al (2010) GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol 11:1–15CrossRefGoogle Scholar
  43. Kailasapathy K, Harmstorf I, Phillips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT-Food Sci Technol 41:1317–1322CrossRefGoogle Scholar
  44. Kaji R, Kiyoshima-Shibata J, Nagaoka M et al (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184:3505–3513PubMedCrossRefGoogle Scholar
  45. Koboziev I, Webb CR, Furr KL et al (2013) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 68:122–133PubMedCrossRefGoogle Scholar
  46. Koo OK, Amalaradjou MAR, Bhunia AK (2012) Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS ONE 7:e29277PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kumar P, Mishra HN (2004) Yoghurt powder-a review of process technology, storage and utilization. Food Bioprod Process 82:133–142CrossRefGoogle Scholar
  48. Kumar M, Nagpal R, Verma V et al (2012) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71:23–34PubMedCrossRefGoogle Scholar
  49. Lammers KM, Brigidi P, Vitali B et al (2003) Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38:165–172PubMedCrossRefGoogle Scholar
  50. Lau CS, Chamberlain RS (2016) Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37PubMedPubMedCentralGoogle Scholar
  51. Lee YK, Lim CY, Teng WL et al (2000) Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol 66:3692–3697PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray drying. Int J Food Microbiol 74:79–86PubMedCrossRefGoogle Scholar
  53. Lim LH, Li HY, Huang CH et al (2009) The effects of heat-killed wild-type Lactobacillus casei Shirota on allergic immune responses in an allergy mouse model. Int Arch Allergy Immunol 148:297–304PubMedCrossRefGoogle Scholar
  54. Liu L, Li X, Zhu Y et al (2017) Effect of microencapsulation with the Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival rate of Lactobacillus rhamnosus in white brined cheese. Food Control 79:44–49CrossRefGoogle Scholar
  55. Lorenzo-Zuniga V, Llop E, Suarez C et al (2014) I.31, a new combination of probiotics, improves irritable bowel syndrome-related quality of life. World J Gastroenterol 20:8709–8716PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ma Y, Liu J, Hou J et al (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS ONE 9(8):e105701PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marafon AP, Sumi A, Alcantara MR et al (2011) Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT-Food Sci Technol 44:511–519CrossRefGoogle Scholar
  58. Mastrangeli G, Corinti S, Butteroni C et al (2009) Effects of live and inactivated VSL#3 probiotic preparations in the modulation of in vitro and in vivo allergen-induced Th2 responses. Int Arch Allergy Immunol 150:133–143PubMedCrossRefGoogle Scholar
  59. Matsuguchi T, Takagi A, Matsuzaki T et al (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha inducing activities in macrophages through toll-like receptor 2. Clin Diagn Lab Immunol 10:259–266PubMedPubMedCentralGoogle Scholar
  60. Matsuzaki T, Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol Cell Biol 78:67–73PubMedCrossRefGoogle Scholar
  61. Maziade PJ, Andriessen JA, Pereira P et al (2013) Impact of adding prophylactic probiotics to a bundle of standard preventative measures for Clostridium difficile infections: enhanced and sustained decrease in the incidence and severity of infection at a community hospital. Curr Med Res Opin 29:1341–1347PubMedCrossRefGoogle Scholar
  62. Mazinani S, Fadaei V, Khosravi-Darani K (2016) Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. J Food Process Preserv 40:1318–1324CrossRefGoogle Scholar
  63. McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 5:97–105PubMedCrossRefGoogle Scholar
  64. Mohania D, Kansal VK, Sagwal R et al (2013) Anticarcinogenic effect of probiotic Dahi and piroxicam on DMH-induced colorectal carcinogenesis in Wistar rats. Am J Cancer Ther Pharmacol 1:1–17Google Scholar
  65. Montoro BP, Benomar N, Lerma LL et al (2016) Fermented Alorena table olives as a source of potential probiotic Lactobacillus pentosus strains. Front Microbiol 7:1583PubMedPubMedCentralCrossRefGoogle Scholar
  66. Motahari P, Mirdamadi S, Kianirad M (2017) Safety evaluation and antimicrobial properties of Lactobacillus pentosus 22C isolated from traditional yogurt. Food Measure 11:972–978CrossRefGoogle Scholar
  67. Mukai T, Asasaka T, Sato E et al (2002) Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol Med Microbiol 32:105–110PubMedCrossRefGoogle Scholar
  68. Neffe-Skocinska K, Okon A, Kolozyn-Krajewska et al (2017) Amino acid profile and sensory characteristics of dry fermented pork loins produced with a mixture of probiotic starter cultures. J Sci Food Agric 97:2953–2960PubMedPubMedCentralCrossRefGoogle Scholar
  69. O’Mahony L, McCarthy J, Kelly P et al (2005) Lactobacillus and Βifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551PubMedCrossRefGoogle Scholar
  70. Ojekunle O, Banwo K, Sanni AI (2017) In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities. Lett Appl Microbiol 64:379–385PubMedCrossRefGoogle Scholar
  71. Oliveira RPS, Florence ACR, Perego P et al (2011) Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk. Int J Food Microbiol 145:22–27PubMedCrossRefGoogle Scholar
  72. Papadimitriou K, Zoumpopoulou G, Foligne B et al (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58PubMedPubMedCentralCrossRefGoogle Scholar
  73. Park K-Y, Jeong J-K (2016) Kimchi (Korean fermented vegetables) as a probiotic food. In: Watson RR, Preedy VR (eds) Probiotic, prebiotics and synbiotics. Bioactive foods in health promotion. Academic, London, pp 391–408CrossRefGoogle Scholar
  74. Patro-Golab B, Shamir R, Szajewska H (2015) Yogurt for treating antibiotic-associated diarrhea: systematic review and meta-analysis. Nutrition 31:796–800PubMedCrossRefGoogle Scholar
  75. Perumal V, Venkatesan A (2017) Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization LWT – Food Sci Technol 78:303–310Google Scholar
  76. Phillips M, Kailasapathy K, Tran L (2006) Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol 108:276–280PubMedCrossRefGoogle Scholar
  77. Pino A, Van Hoorde K, Pitino I et al (2017) Survival of potential probiotic lactobacilli used as adjunct cultures on Pecorino Siciliano cheese ripening and passage through the gastrointestinal tract of healthy volunteers. Int J Food Microbiol 252:42–52PubMedCrossRefGoogle Scholar
  78. Preidis GA, Hill C, Guerrant RL et al (2011) Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 140:8–14PubMedCrossRefGoogle Scholar
  79. Radulovic Z, Miocinovic J, Mirkovic N et al (in press) Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese. Anim Sci J.  https://doi.org/10.1111/asj.12802
  80. Ranadheera CS, Evans CA, Adams MC et al (2012) In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Res Int 49:619–625CrossRefGoogle Scholar
  81. Rao RK, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9:99–107PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rautava S, Arvilommi H, Isolaur E (2006) Specific probiotics in enhancing maturation of IgA responses in formula-fed infants. Pediatr Res 60:221–224PubMedCrossRefGoogle Scholar
  83. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rodrigues AC, Cara DC, Fretez SH et al (2000) Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J Appl Microbiol 89:404–414PubMedCrossRefGoogle Scholar
  85. Rzepkowska A, Zielińska D, Ołdak A et al (in press) Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. Int J Food Prop in press  https://doi.org/10.1080/10942912.2016.1250098
  86. Sanchez B, Lopez P, Gonzalez-Rodrıguez I et al (2011) A flagellin-producing Lactococcus strain: interactions with mucin and enteropathogens. FEMS Microbiol Lett 318:101–107PubMedCrossRefGoogle Scholar
  87. Schuck P, Dolivet A, Mejean S et al (2013) Spray drying of dairy bacteria: new opportunities to improve the viability of bacteria powders. Int Dairy J 31:12–17CrossRefGoogle Scholar
  88. Serban DE (2014) Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics. Cancer Lett 345:258–270PubMedCrossRefGoogle Scholar
  89. Shang L, Fukata M, Thirunarayanan N et al (2008) Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135:529–538PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shen J, Zuo ZX, Mao AP (2014) Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm Bowel Dis 20:21–35PubMedCrossRefGoogle Scholar
  91. Shida K, Kiyoshima-Shibata J, Nagaoka M et al (2006) Induction of interleukin-12 by lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 89:3306–3317PubMedCrossRefGoogle Scholar
  92. Silva J, Carvalho AS, Teixeira P et al (2002) Bacteriocin production by spray-dried lactic acid bacteria. Lett Appl Microbiol 34:77–81PubMedCrossRefGoogle Scholar
  93. Silva J, Carvalho AS, Ferreira R et al (2005) Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp. bulgaricus to stress conditions during spray-drying. J Appl Microbiol 98:775–782PubMedCrossRefGoogle Scholar
  94. Silva J, Freixo R, Gibbs P et al (2011) Spray-drying for the production of dried cultures. Int J Dairy Technol 64:321–335CrossRefGoogle Scholar
  95. Steidler L, Hans W, Schotte L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting Interleukin-10. Science 289:1352–1355PubMedCrossRefGoogle Scholar
  96. Stemke DJ (2004) Geneticallymodified microorganisms biosafety and ethical issues. In: Parekh SR (ed) The GMO handbook. Genetically modified animals, microbes, and plants in biotechnology. Humana Press, Totowa, pp 85–132Google Scholar
  97. Sullivan A, Nord CE (2005) Probiotics and gastrointestinal diseases. J Intern Med 257:78–92PubMedCrossRefGoogle Scholar
  98. Szajewska H, Kolodziej M (2015a) Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther 42:1149–1157PubMedCrossRefGoogle Scholar
  99. Szajewska H, Kolodziej M (2015b) Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther 42:793–801PubMedCrossRefGoogle Scholar
  100. Szajewska H, Horvath A, Kolodziej M (2015) Systematic review with meta-analysis: Saccharomyces boulardii supplementation and eradication of Helicobacter pylori infection. Aliment Pharmacol Ther 41:1237–1245PubMedCrossRefGoogle Scholar
  101. Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6:261–274PubMedPubMedCentralCrossRefGoogle Scholar
  102. Termont S, Vandenbroucke K, Iserentant D et al (2006) Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Appl Environ Microbiol 72:7694–7700PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tomasz B, Zoran S, Jaroslaw W et al (2014) Long-term use of probiotics Lactobacillus and Bifidobacterium has a prophylactic effect on the occurrence and severity of pouchitis: a randomized prospective study. Biomed Res Int 2014:208064PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tong JL, Ran ZH, Shen J et al (2007) Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 25:155–168PubMedCrossRefGoogle Scholar
  105. Turroni S, Vitali B, Candela M et al (2010) Antibiotics and probiotics in chronic pouchitis: a comparative proteomic approach. World J Gastroenterol 16:30–41PubMedPubMedCentralGoogle Scholar
  106. van Hoffen E, Korthagen NM, de Kivit S et al (2010) Exposure of intestinal epithelial cells to UV-killed Lactobacillus GG but not Bifidobacterium breve enhances the effector immune response in vitro. Int Arch Allergy Immunol 152:159–168PubMedCrossRefGoogle Scholar
  107. Varankovich NV, Nickerson MT, Korber DR (2015) Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 6:685PubMedPubMedCentralCrossRefGoogle Scholar
  108. Verma A, Shukla G (2013) Probiotics Lactobacillus rhamnosus GG, Lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in Sprague Dawley rats. Nutr Cancer 65:84–91PubMedCrossRefGoogle Scholar
  109. Vinderola CG, Costa GA, Regenhardt S et al (2002) Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J 12:579–589CrossRefGoogle Scholar
  110. Vipperla K, O’Keefe SJ (2012) The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Pract 27:624–635PubMedCrossRefGoogle Scholar
  111. Volzing K, Borrero J, Sadowsky MJ et al (2013) Antimicrobial peptides targeting gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol 2:643–650PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93:209–217PubMedCrossRefGoogle Scholar
  113. Wei C, Xun AY, Wei XX et al (2016) Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol Cancer Res Treat 15:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  114. Whorwell PJ, Altringer L, Morel J et al (2006) Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101:1581–1590PubMedCrossRefGoogle Scholar
  115. Yadav AK, Tyagi A, Kumar A et al (2017) Adhesion of lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 57:2042–2056PubMedCrossRefGoogle Scholar
  116. Yoon JS, Sohn W, Lee OY et al (2014) Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 29:52–59PubMedCrossRefGoogle Scholar
  117. Zare F, Champagne CP, Simpson BK et al (2012) Effect of the addition of pulse ingredients to milk on acid production by probiotic and yoghurt starter cultures. LWT-Food Sci Technol 45:155–160CrossRefGoogle Scholar
  118. Zhu Q, Gao R, Wu W et al (2013) The role of gut microbiota in the pathogenesis of colorectal cancer. Tumor Biol 34:1285–1300CrossRefGoogle Scholar
  119. Zotta T, Parente E, Ricciardi A (2017) Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. J Appl Microbiol 122:857–869PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Spiros Paramithiotis
    • 1
  • Eleftherios H. Drosinos
    • 1
  1. 1.Department of Food Science and Human NutritionAgricultural University of AthensAthensGreece

Personalised recommendations