Application of Computational Intelligence Techniques for Forecasting Problematic Wine Fermentations Using Data from Classical Chemical Measurements

  • Gonzalo Hernández
  • Roberto León
  • Alejandra Urtubia
Part of the Food Microbiology and Food Safety book series (FMFS)


The early forecasting of normal and problematic wine fermentations is one of the main problems of winemaking processes, due to its significant impacts in wine quality and utility. In Chile this is a critical problem because it is one of the top ten wine-producing countries. In this chapter, we review the computational intelligence methods that have been applied to solve this problem. Both methods studied, support vector machines and artificial neural networks, show excellent results with respect to the overall prediction error for different training/testing/validation percentages, different time cutoffs, and several parameter configurations. These results are of great importance for wine production because they are based only on measurement of classical chemical variables and they confirm that computational intelligence methods are a useful tool to the winemakers in order to correct in time a potential problem in the fermentation process.


Support vector machines Neural networks Wine fermentations Classical chemical variables 



Research supported by grants: FONDECYT 1120679 and Conicyt PIA/Basal FB0821.


  1. Abe S (2010) Support vector machines for pattern classification. 2nd edn. Springer Academic Press, Elsevier, Oxford, United KingdomCrossRefGoogle Scholar
  2. Beltran N et al (2006) Feature extraction and classification of Chilean wines. J Food Eng 75:1–10CrossRefGoogle Scholar
  3. Beltran G, Novo M, Guillamón J, Mas A, Rozés N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177CrossRefGoogle Scholar
  4. Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  5. Bishop CM (2006) Pattern recognition and machine learning. Springer, New YorkGoogle Scholar
  6. Bisson L, Butzke C (2000) Diagnosis and rectification of stuck and sluggish fermentations. Am J Enol Vitic 51(2):168–177Google Scholar
  7. Blateyron L, Sablayrolles JM (2001) Stuck and slow fermentations in enology: statical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J Biosci Bioeng 91(2):184–189CrossRefGoogle Scholar
  8. Capparuccia R, De Leone R, Marchitto E (2007) Integrating support vector machines and neural networks. Neural Netw 20:590–597CrossRefGoogle Scholar
  9. D’Amatto D, Corbo M, Del Nobile M, Sinigaglia M (2006) Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int J Food Sci Technol 41:1152–1157CrossRefGoogle Scholar
  10. Demyanov S, Bailey J, Ramamohanarao K, Leckie C (2012) AIC and BIC based approaches for SVM parameter value estimation with RBK kernels. JMLR W&CP 25:97–112Google Scholar
  11. Engelbrecht AP (2007) Computational intelligence: an introduction. 2nd ed. John Wiley & Sons, West Sussex, EnglandGoogle Scholar
  12. Executive Report Chilean Wine Production (2011–2016) Servicio Agrícola y Ganadero de ChileGoogle Scholar
  13. Fernandes AM et al (2015) Brix, pH and anthocyanin content determination in whole port wine grape berries by hyperspectral imaging and neural networks. Comput Electron Agric 115:88–96CrossRefGoogle Scholar
  14. Gaspar P, Carbonell J, Oliveira JL (2012) On the parameters optimization of support vector machines for binary classification. J Integr Bioinform 9(3):201PubMedGoogle Scholar
  15. Gómez-Meire S et al (2014) Assuring the authenticity of northwest Spain white wine varieties using machine learning techniques. Food Res Int 60:230–240CrossRefGoogle Scholar
  16. Hernández G, Leon R, Urtubia A (2016) Detection of abnormal wine fermentation processes by support vector machines. Cluster Computing. 19(3):1219CrossRefGoogle Scholar
  17. Hernández G, Leon R, Urtubia A (2017) Application of neural networks for the early prediction of problematic wine fermentations using data from the classical chemical measurements, submitted to Journal of Biotechnology, (in press)Google Scholar
  18. Hosu A, MirceaCristea VM, Cimpoiu C (2014) Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem 150:113–118CrossRefGoogle Scholar
  19. Jurado M et al (2012) Classification of Spanish DO white wines according to their elemental profile by means of support vector machines. Food Chem 135(3):898–903CrossRefGoogle Scholar
  20. Kruse R, et al (2013) Computational intelligence: a methodological introduction. Springer-Verlag, London, EnglandGoogle Scholar
  21. Kruzlicova D et al (2009) Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem 112:1046–1052CrossRefGoogle Scholar
  22. Liao O et al (2015) Parameter optimization for support vector machine based on nested genetic algorithms. J Autom Control Eng 3(6):507–511CrossRefGoogle Scholar
  23. Marini F, Bucci R, Magri A (2008) Artificial neural networks in chemometrics: history, examples and perspectives. Microchem J 88:178–185CrossRefGoogle Scholar
  24. Nagata Y, Chu K (2003) Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol Lett 25:1837–1842CrossRefGoogle Scholar
  25. Penza M, Cassano G (2004) Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chem 86:283–296CrossRefGoogle Scholar
  26. Perez-Magariño S et al (2004) Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 62:983–990CrossRefGoogle Scholar
  27. Pszczólkowski P, Carriles P, Cumsille M, Maklouf M (2001) Reflexiones sobre la madurez de cosecha y las condiciones de vinificación, con relación a la Problemática de fermentaciones alcohólicas lentas y/o paralizante en Chile, Facultad de Agronomía, Pontificia Universidad Católica de ChileGoogle Scholar
  28. Ripley BD (2008) Pattern recognition and neural networks. Cambridge University Press, Cambridge, USAGoogle Scholar
  29. Rocha M, Cortez P, Neves J (2007) Evolution of neural networks for classification and regression. Neurocomputing 70:2809–2816CrossRefGoogle Scholar
  30. Sánchez D (2003) Advanced support vector machines and kernel methods. NeurocomputingGoogle Scholar
  31. Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge, USAGoogle Scholar
  32. Theodoridis S, Koutroumbas K (2008) Pattern recognition, fourth edition. Academic Press, Elsevier, San Diego, USACrossRefGoogle Scholar
  33. Urtubia A, Roger JM (2011) Predictive power of LDA to discriminate abnormal wine fermentations. J Chemom 25(7):382–388CrossRefGoogle Scholar
  34. Urtubia A, Emparan M, Almonacid S, Pinto M, Valdenegro M (2010a) Application of MPCA and MPLS on industrial batch bioprocesses. J Biotechnol 150(1):310CrossRefGoogle Scholar
  35. Urtubia A, Emparan M, Roman C, Hernández G, Roger JM (2010b) Multivariate statistic and pattern recognition to detect abnormal fermentations in wine process. J Biotechnol 150(1):328CrossRefGoogle Scholar
  36. Urtubia A, Hernández G, Román C (2011) Prediction of problematic wine fermentations using artificial neural networks. Bioprocess Biosyst Eng 34:1057–1065CrossRefGoogle Scholar
  37. Urtubia A, Hernández G, Roger JM (2012) Detection of abnormal fermentations in wine process by multivariate statistics and pattern recognition techniques. J Biotechnol 159:336–341CrossRefGoogle Scholar
  38. Varela C, Pizarro F, Agosin E (2004) Biomass content govern fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70(6):3392–3400CrossRefGoogle Scholar
  39. Wu Z et al (2015) Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control 50:405–412CrossRefGoogle Scholar
  40. Yang Y, He Q, Hu X (2012) A compact neural network for training, support vector machines. Neurocomputing 86:193–198CrossRefGoogle Scholar
  41. Yu HY, Niu XY, Lin HJ, Ying YB, Li BB, Pan XX (2009) A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines. Food Chem 113(1):291–296CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gonzalo Hernández
    • 1
  • Roberto León
    • 2
  • Alejandra Urtubia
    • 3
    • 4
  1. 1.Universidad de Santiago de Chile, Departamento de Ingeniería IndustrialSantiagoChile
  2. 2.Universidad Andrés Bello, Facultad de IngenieríaViña del MarChile
  3. 3.Universidad Técnica Federico Santa María, Departamento de Ingeniería Química y AmbientalValparaísoChile
  4. 4.Centro Regional de Estudios en Alimentación SaludableValparaísoChile

Personalised recommendations