Skip to main content

A Variational Latent Variable Model with Recurrent Temporal Dependencies for Session-Based Recommendation (VLaReT)

  • Conference paper
  • First Online:
Book cover Advances in Information Systems Development

Abstract

This paper presents an innovative deep learning model, namely the Variational Latent Variable Model with Recurrent Temporal Dependencies for Session-Based Recommendation (VLaReT). Our method combines a Recurrent Neural Network with Amortized Variational Inference (AVI) to enable increased predictive learning capabilities for sequential data. We use VLaReT to build a session-based Recommender System that can effectively deal with the data sparsity problem. We posit that this capability will allow for producing more accurate recommendations on a real-world sequence-based dataset. We provide extensive experimental results which demonstrate that the proposed model outperforms currently state-of-the-art approaches.

A prior version of this paper has been published in the ISD2017 Proceedings (http://aisel.aisnet.org/isd2014/proceedings2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1–2), 101–123 (2012)

    Article  Google Scholar 

  2. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295 (2001)

    Google Scholar 

  3. Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Recommender Systems Handbook, pp. 37–76. Springer US (2015)

    Google Scholar 

  4. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. CoRR, abs/1511.06939 (2015)

    Google Scholar 

  5. Tan, Y. K., Xu, X., & Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 17–22 (2016)

    Google Scholar 

  6. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Berg, A.C.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  Google Scholar 

  7. Sotirios P., Chatzis: A coupled Indian Buet process model for collaborative filtering. In: Journal of Machine Learning Research: Workshop and Conference Proceedings, vol. 25: ACML 2012, pp. 65–79 (2012)

    Google Scholar 

  8. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of ICLR’14 (2014)

    Google Scholar 

  9. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)

    Article  Google Scholar 

  10. Shani, G., Brafman, R.I., Heckerman, D.: An MDP-based recommender system. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 453–460 (2002)

    Google Scholar 

  11. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: Advances in Neural Information Processing Systems, pp. 2980–2988 (2015)

    Google Scholar 

  12. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘15, pp. 1235–1244 (2015)

    Google Scholar 

  13. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798 (2007)

    Google Scholar 

  14. Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., Wang, B., Liu, T.Y.: Sequential click prediction for sponsored search with recurrent neural networks. arXiv preprint arXiv:1404.5772 (2014)

  15. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood for session-based recommendation. In: Proceedings of the RecSys, 17 (2017)

    Google Scholar 

  16. Hidasi, B., & Karatzoglou, A. (2017). Recurrent neural networks with Top-k gains for session-based recommendations. arXiv preprint arXiv:1706.03847

  17. Steck, H.: Gaussian ranking by matrix factorization. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 115–122 (2015)

    Google Scholar 

  18. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  19. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K.: An introduction to variational methods for graphical models. In Learning in Graphical Models, M.I. Jordan (Ed.). Kluwer, Dordrecht, pp. 105–162 (1998)

    Google Scholar 

  20. Salakhutdinov, R. and Mnih, A.: Bayesian probabilistic matrix factorization using Markov Chain Monte Carlo. In: Proceedings of ICML’11 (2011)

    Google Scholar 

  21. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(July), pp. 2121–2159 (2011)

    Google Scholar 

  22. Team, T.T.D., Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., … Belopolsky, A.: Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)

  23. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  24. Ogasawara, E., Martinez, L.C., De Oliveira, D., Zimbrão, G., Pappa, G.L., Mattoso, M.: Adaptive normalization: a novel data normalization approach for non-stationary time series. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2010)

    Google Scholar 

  25. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Networks 12(1), 145–151 (1999)

    Article  Google Scholar 

  26. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of AISTATS (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Christodoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christodoulou, P., Chatzis, S.P., Andreou, A.S. (2018). A Variational Latent Variable Model with Recurrent Temporal Dependencies for Session-Based Recommendation (VLaReT). In: Paspallis, N., Raspopoulos, M., Barry, C., Lang, M., Linger, H., Schneider, C. (eds) Advances in Information Systems Development. Lecture Notes in Information Systems and Organisation, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-74817-7_4

Download citation

Publish with us

Policies and ethics