On the Influence of Modification Timespan Weightings in the Location of Bugs in Models

  • Lorena ArcegaEmail author
  • Jaime Font
  • Øystein Haugen
  • Carlos Cetina
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 26)


Bug location is a common task in Software Engineering, specially when maintaining and evolving software products. When locating bugs in code, results depend greatly on the way code modification timespans are weighted. However, the influence of timespan weightings on bug location in models has not received enough attention yet. Throughout this paper, we analyze the influence of several timespan weightings on bug location in models. These timespan weightings guide an evolutionary algorithm, which returns a ranking of model fragments relevant to the solution of a bug. We evaluated our timespan weightings in BSH, a real-world industrial case study, by measuring the results in terms of recall, precision, and F-measure. Results show that the use of the most recent timespan model modifications provide the best results in our study. We also performed a statistical analysis to provide evidence of the significance of the results.


Bug location Model driven engineering Reverse engineering 



This work has been partially supported by the Ministry of Economy and Competitiveness (MINECO) through the Spanish National R+D+i Plan and ERDF funds under the project Model-Driven Variability Extraction for Software Product Line Adoption (TIN2015-64397-R).


  1. 1.
    Lehman, M.M., Ramil, J.F., Kahen, G.: A paradigm for the behavioural modelling of software processes using system dynamics. Citeseer (2001)Google Scholar
  2. 2.
    Antoniol, G., Gueheneuc, Y.-G.: Feature identification: an epidemiological metaphor. IEEE Trans. Softw. Eng. 32(9), 627–641 (2006)CrossRefGoogle Scholar
  3. 3.
    Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxonomy and survey. J. Softw. Maint. Evol. Res. Pract. (2011)Google Scholar
  4. 4.
    Rubin, J., Chechik, M.: A survey of feature location techniques. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 29–58. Springer, Berlin (2013)CrossRefGoogle Scholar
  5. 5.
    Hassan, A.E., Holt, R.C.: The top ten list: dynamic fault prediction. In: 21st IEEE International Conference on Software Maintenance (ICSM’05), pp. 263–272 (2005)Google Scholar
  6. 6.
    Efficient Java Matrix Library, Accessed: April 07, 2016 (2016)
  7. 7.
    Sisman, B., Kak, A.C.: Incorporating version histories in Information Retrieval based bug localization. In: 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pp. 50–59 (2012)Google Scholar
  8. 8.
    Plisson, J., Lavrac, N., Mladenic, D.: A rule based approach to word lemmatization. In: Proceedings of the 7th International Multi-Conference Information Society IS 2004. pp. 83–86 (2004)Google Scholar
  9. 9.
    Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)Google Scholar
  10. 10.
    Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: Proceedings of the 2008 12th International Software Product Line Conference, pp. 139–148. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  11. 11.
    Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. In: Proceedings of the 26th International Conference on Software Engineering, pp. 563–572. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  12. 12.
    Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in model-based software product lines through a genetic algorithm. In: 15th International Conference on Software Reuse, Limassol, Cyprus (2016)Google Scholar
  13. 13.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process 25(2–3), 259–284 (1998)CrossRefGoogle Scholar
  14. 14.
    Manning, C.D., Schütze, H.: Foundations of Natural Language Processing. Reading, 678 (2000)Google Scholar
  15. 15.
    Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using structured information retrieval. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 345–355 (2013)Google Scholar
  16. 16.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York, NY, USA (1986)Google Scholar
  17. 17.
    Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223. Association for Computational Linguistics, Stroudsburg, PA, USA (2003)Google Scholar
  18. 18.
    Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in models through a genetic algorithm driven by information retrieval techniques. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, pp. 272–282. ACM, New York (2016)Google Scholar
  19. 19.
    Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-objective genetic algorithms: performance comparison and performance measures. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1143–1150 (2006)Google Scholar
  20. 20.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN V: 5th International Conference Amsterdam, The Netherlands September 27–30, 1998 Proceedings. pp. 292–301. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)Google Scholar
  21. 21.
    Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework, 2nd edn. Addison-Wesley Professional (2009)Google Scholar
  22. 22.
    Dyer, D.W.: The watchmaker framework for evolutionary computation (evolutionary/genetic algorithms for Java) (2006)Google Scholar
  23. 23.
    Apache OpenNLP: Toolkit for the processing of natural language text. Accessed: April 07, 2016 (2010)
  24. 24.
    The English (Porter2) stemming algorithm., Accessed: April 07, 2016 (2002)
  25. 25.
    Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investigation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623 (2013)CrossRefGoogle Scholar
  26. 26.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. (NY) 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  27. 27.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)Google Scholar
  28. 28.
    de Oliveira Barros, M., Dias-Neto, A.C.: 0006/2011-Threats to validity in search-based software engineering empirical studies. RelaTe-DIA 5(1) (2011)Google Scholar
  29. 29.
    Kim, D., Tao, Y., Kim, S., Zeller, A.: Where should we fix this bug? A two-phase recommendation model. IEEE Trans. Softw. Eng. 39(11), 1597–1610 (2013)CrossRefGoogle Scholar
  30. 30.
    Zamani, S., Lee, S.P., Shokripour, R., Anvik, J.: A noun-based approach to feature location using time-aware term-weighting. Inf. Softw. Technol. 56(8), 991–1011 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lorena Arcega
    • 1
    • 2
    Email author
  • Jaime Font
    • 1
    • 2
  • Øystein Haugen
    • 3
  • Carlos Cetina
    • 1
  1. 1.Universidad San JorgeSaragossaSpain
  2. 2.University of OsloOsloNorway
  3. 3.Østfold University CollegeHaldenNorway

Personalised recommendations