Skip to main content

The Potential of Metals in Combating Bacterial Pathogens

  • Chapter
  • First Online:
Book cover Biomedical Applications of Metals

Abstract

The progression of antimicrobial resistance and the presence of microbial biofilms pose serious threats, which have prompted the development of novel antimicrobials such as metals and metal-based compounds. Whereas the use of metals has historical foundations, metal antimicrobials are presently found in numerous consumer products since they demonstrate effective broad-spectrum activity that enables the eradication of pathogenic microorganisms. Nonetheless, much is yet to be understood regarding the mechanisms by which metals are able to kill microbes. Metal antimicrobial use can cause environmental contamination resulting in altered microbial communities and the propagation of resistance. Furthermore, of primary concern, is the toxicity of metals to humans. Upon the onset of antibiotic resistance, is the use of metals worth the risk? Or are we past the point of consideration, since metal antimicrobials are now routinely used and developed as a means of eliminating threatening microorganisms?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander JW (2009) History of the medical use of silver. Surgery 10:289–292

    Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreini C, Bertini I, Rosato A (2004) A hint to search for metalloproteins in gene banks. Bioinformatics 20:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337

    Article  CAS  PubMed  Google Scholar 

  • Arakawa H, Neault J, Tajmir-Riahi H (2001) Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azarpazhooh A, Limeback H (2008) The application of ozone in dentistry: a systematic review of literature. J Dent 36:104–116

    Article  CAS  PubMed  Google Scholar 

  • Bakalar N (2009) Penicillin, 1940. New York Times 6–7

    Google Scholar 

  • Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayramov DF, Neff JA (2016) Beyond conventional antibiotics—New directions for combination products to combat biofilm. Adv Drug Deliv Rev (in press). https://doi.org/10.1016/j.addr.2016.07.010

  • Betts KS (2010) Body of proof: biomonitoring data reveal widespread bisphenol A exposures. Environ Health Perspect 118:a353

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Kirketerp-Møller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PØ, Høiby N, Givskov M (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115:921–928

    Article  CAS  PubMed  Google Scholar 

  • Bologna RA, Tu LM, Polansky M, Fraimow HD, Gordon DA, Whitmore KE (1999) Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: a multicenter study. Urology 54:982–987

    Article  CAS  PubMed  Google Scholar 

  • Boonkaew B, Kempf M, Kimble R, Supaphol P, Cuttle L (2014) Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat and PolyMem Silver. Burns 40:89–96

    Article  PubMed  Google Scholar 

  • Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278

    CAS  Google Scholar 

  • Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J 18:1–20

    Article  CAS  Google Scholar 

  • Borkow G, Zatcoff RC, Gabbay J (2009) Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses 73:883–886

    Article  CAS  PubMed  Google Scholar 

  • Borkow G, Zhou SS, Page T, Gabbay J (2010) A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE 5:e11295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166

    Article  CAS  PubMed  Google Scholar 

  • Buonocore G, Perrone S, Tataranno ML (2010) Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 15:186–190

    Article  PubMed  Google Scholar 

  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJV, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Chitambar CR, Narasimhan J (1991) Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology 59:3–10

    Article  CAS  PubMed  Google Scholar 

  • Ciriolo MR, Civitareale P, Carrì MT, De Martino A, Galiazzo F, Rotilio G (1994) Purification and characterization of Ag, Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver. J Biol Chem 269:25783–25787

    CAS  PubMed  Google Scholar 

  • Clarkson T, Magos L (2007) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Cooksey C (2012) Health concerns of heavy metals and metalloids. Sci Prog 95:73–88

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Curtis LT (2008) Prevention of hospital-acquired infections: review of non-pharmacological interventions. J Hosp Infect 69:204–219

    Article  CAS  PubMed  Google Scholar 

  • Davenport K, Keeley FX (2005) Evidence for the use of silver-alloy-coated urethral catheters. J Hosp Infect 60:298–303

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wit MJ, Dann J, Van Der Gaast S, De Ronde CEJ, Gerneke D (2001) Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambr Res 106:93–116

    Article  Google Scholar 

  • Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72

    Article  CAS  PubMed  Google Scholar 

  • Donnell GMC (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    Google Scholar 

  • Dupont CL, Yang S, Palenik B, Bourne PE (2006) Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. PNAS 103:17822–17827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand A, Azzouzi A, Bourbon ML, Steunou AS, Liotenberg S, Maeshima A, Astier C, Argentini M, Saito S, Ouchane S (2015) C-type cytochrome assembly is a key target of copper toxicity within the bacterial periplasm. mBio 6:1–10

    Google Scholar 

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  • Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng 5:22

    Google Scholar 

  • Faúndez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:1–7

    Article  Google Scholar 

  • Fleming A (1929) on the antibacterial action of cultures of a penicillium. Br J Exp Pathol 10:226–236

    CAS  PubMed Central  Google Scholar 

  • French GL (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36:S3–S7

    Article  CAS  PubMed  Google Scholar 

  • Gant VA, Wren MWD, Rollins MSM, Jeanes A, Hickok SS, Hall TJ (2007) Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 60:294–299

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  PubMed  Google Scholar 

  • Gugala N, Lemire JA, Turner RJ (2017) The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. J Antibiot (in press). https://doi.org/10.1038/ja.2017.10

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies and metal salts. ACS Nano 5:7214–7225

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Ceri H, Stremick CA, Turner RJ (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Joo DA, Stan MA, Chan CS, Allan ND, Vrionis HA, Olson ME, Ceri H (2008) Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2870–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobman JL, Brown NL (1997) Bacterial mercury-resistance genes. Met Ions Biol Syst 34:527–568

    CAS  PubMed  Google Scholar 

  • Hobman JL, Crossman LC (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64:471–497

    Article  CAS  PubMed  Google Scholar 

  • Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the “pre-antibiotic” era. Nature 302:725–726

    Article  CAS  PubMed  Google Scholar 

  • Huisingh D (1974) Heavy metals: implications for agriculture. Ann Rev Phytopathol 12:375–388

    Article  CAS  Google Scholar 

  • Huttenhower C, Fah Sathirapongsasuti J, Segata N, Gevers D, Earl AM, Fitzgerald MG, Young SK, Zeng Q, Alm EJ, Alvarado L, Anderson S, Arachchi HM, Bloom T, Ciulla DM, Erlich RL, Feldgarden M, Fisher S, Friedrich DC, Giannoukos G, Goldberg JM, Griggs A, Gujja S, Haas BJ, Hepburn TA, Howarth C, Huang KH, Kells C, Lennon N, Mehta T, Nusbaum C, Pearson M, Priest ME, Russ C, Shenoy N, Sykes SM, Tabbaa DG, Ward DV, Yandava C, Zucker JD, Birren BW, Knight R, Clemente JC, Lozupone CA, McDonald D, Abubucker S, Chinwalla AT, Fulton RS, Hallsworth-Pepin K, Lobos EA, Magrini V, Martin JC, Mitreva M, Sodergren EJ, Wollam AM, Appelbaum E, Bhonagiri V, Chen L, Clifton SW, Delehaunty KD, Dooling DJ, Farmer CN, Fronick CC, Fulton LL, Gao H, Herter B, Kota KC, Mardis ER, Mihindukulasuriya KA, Minx PJ, Oglaughlin M, Pohl C, Tomlinson CM, Walker J, Wang Z, Warren W, Wylie KM, Wylie T, Ye L, Zhou Y, Weinstock GM, Wilson RK, Badger JH, Madupu R, Bihan M, Busam DA, Scott Durkin A, Foster L, Goll J, Li K, McCorrison JM, Miller JR, Rogers Y-HH, Sanka RK, Singh I, Sutton GG, Thiagarajan M, Torralba M, Methé BA, Nelson KE, Creasy HH, Giglio MG, Wortman JR, Abolude OO, Arze CA, Cantarel BL, Crabtree J, Davidovics NJ, Felix VM, Jordan C, Mahurkar AA, Orvis J, Ravel J, Schriml L, White JR, White O, Muzny DM, Worley KC, Buhay CJ, Ding Y, Dugan SP, Holder ME, Jiang H, Joshi V, Kovar CL, Lee SL, Lewis L, Liu Y, Newsham I, Qin X, Reid JG, Wilczek-Boney K, Wu Y, Zhang L, Zhu Y, Gibbs RA, Highlander SK, Petrosino JF, Versalovic J, Aagaard KM, Allen-Vercoe E, Andersen GL, Armitage G, Ayvaz T, Keitel WA, Ross MC, Youmans BP, Baker CC, Begg L, Belachew T, Campbell JL, Deal C, Di Francesco V, Giblin C, Giovanni MY, Blaser MJ, Bonazzi V, Chhibba S, McEwen J, Peterson J, Proctor LM, Schloss JA, Wang L, Wellington C, Wetterstrand KA, Paul Brooks J, Buck GA, Rivera MC, Sheth NU, Canon SR, Chain PSG, Lo C-CC, Scholz M, Kyrpides NC, Liolios K, Markowitz VM, Mavromatis K, Pagani I, Chen I-MAMA, Chu K, Palaniappan K, Cutting MA, Hamilton HA, Harris EL, Dwayne Lunsford R, McInnes P, Davis CC, Desantis TZ, Dewhirst FE, Izard J, Lemon KP, Deych E, La Rosa PS, Shannon WD, Michael Dunne W, Watson MA, Edgar RC, Farrell RM, Sharp RR, Faust K, Raes J, Fodor AA, Forney LJ, Friedman J, Smillie CS, Garcia N, Gonzalez A, Knights D, Kinder Haake S, Hoffmann DE, Huse SM, Jansson JK, Katancik JA, Kelley ST, Rodriguez-Mueller B, King NB, Kong HH, Koren O, Ley RE, Koren S, Liu B, Pop M, Sommer DD, Lewis CM, Spicer P, Madden T, Mannon PJ, McGuire AL, Patel SM, Podar M, Vishnivetskaya TA, Pollard KS, Sharpton TJ, Truty RM, Rho M, Ye Y, Rhodes R, Riehle KP, Sankar P, Schloss PD, Schubert AM, Schmidt TM, Simone GA, Sobel JD, Treangen TJ, Yooseph S, Zoloth L, Conlan S, Segre JA, Chinwalla AT, Creasy HH, Earl AM, Fitzgerald MG, Fulton RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, Worley KC, Wortman JR, Young SK, Zeng Q, Aagaard KM, Abolude OO, Allen-Vercoe E, Alm EJ, Alvarado L, Andersen GL, Anderson S, Appelbaum E, Arachchi HM, Armitage G, Arze CA, Ayvaz T, Baker CC, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser MJ, Bloom T, Bonazzi V, Paul Brooks J, Buck GA, Buhay CJ, Busam DA, Campbell JL, Canon SR, Cantarel BL, Chain PSG, Chen I-MAMA, Chen L, Chhibba S, Chu K, Ciulla DM, Clemente JC, Clifton SW, Conlan S, Crabtree J, Cutting MA, Davidovics NJ, Davis CC, Desantis TZ, Deal C, Delehaunty KD, Dewhirst FE, Deych E, Ding Y, Dooling DJ, Dugan SP, Michael Dunne W, Scott Durkin A, Edgar RC, Erlich RL, Farmer CN, Farrell RM, Faust K, Feldgarden M, Felix VM, Fisher S, Fodor AA, Forney LJ, Foster L, Di Francesco V, Friedman J, Friedrich DC, Fronick CC, Fulton LL, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni MY, Goldberg JM, Goll J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas BJ, Hamilton HA, Harris EL, Hepburn TA, Herter B, Hoffmann DE, Holder ME, Howarth C, Huang KH, Huse SM, Izard J, Jansson JK, Jiang H, Jordan C, Joshi V, Katancik JA, Keitel WA, Kelley ST, Kells C, King NB, Knights D, Kong HH, Koren O, Koren S, Kota KC, Kovar CL, Kyrpides NC, La Rosa PS, Lee SL, Lemon KP, Lennon N, Lewis CM, Lewis L, Ley RE, Li K, Liolios K, Liu B, Liu Y, Lo C-CC, Lozupone CA, Dwayne Lunsford R, Madden T, Mahurkar AA, Mannon PJ, Mardis ER, Markowitz VM, Mavromatis K, McCorrison JM, McDonald D, McEwen J, McGuire AL, McInnes P, Mehta T, Mihindukulasuriya KA, Miller JR, Minx PJ, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel SM, Pearson M, Peterson J, Podar M, Pohl C, Pollard KS, Pop M, Priest ME, Proctor LM, Qin X, Raes J, Ravel J, Reid JG, Rho M, Rhodes R, Riehle KP, Rivera MC, Rodriguez-Mueller B, Rogers Y-HH, Ross MC, Russ C, Sanka RK, Sankar P, Fah Sathirapongsasuti J, Schloss JA, Schloss PD, Schmidt TM, Scholz M, Schriml L, Schubert AM, Segata N, Segre JA, Shannon WD, Sharp RR, Sharpton TJ, Shenoy N, Sheth NU, Simone GA, Singh I, Smillie CS, Sobel JD, Sommer DD, Spicer P, Sutton GG, Sykes SM, Tabbaa DG, Thiagarajan M, Tomlinson CM, Torralba M, Treangen TJ, Truty RM, Vishnivetskaya TA, Walker J, Wang L, Wang Z, Ward DV, Warren W, Watson MA, Wellington C, Wetterstrand KA, White JR, Wilczek-Boney K, Wu Y, Wylie KM, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans BP, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker JD, Birren BW, Gibbs RA, Highlander SK, Methé BA, Nelson KE, Petrosino JF, Weinstock GM, Wilson RK, White O (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  CAS  Google Scholar 

  • Imlay JA (2015) Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol 24:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip M, Lui SL, Poon VKM, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55:59–63

    Article  CAS  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Joshi S, Chauhan HPS, Carpenter N (2017) Preparation, spectroscopic characterization and antimicrobial activities of mixed metal (Sb and Bi) bridged derivatives with mixed sulfur donor ligands. J Mol Struct 1128:221–229

    Article  CAS  Google Scholar 

  • Jung WK, Kim SH, Koo HC, Shin S, Kim JM, Park YK, Hwang SY, Yang H, Park YH (2007) Antifungal activity of the silver ion against contaminated fabric. Mycoses 50:265–269

    Article  CAS  PubMed  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708

    Article  CAS  PubMed  Google Scholar 

  • Keele BB, McCord JM, Fridovich I (1970) Superoxidase dismutase from Escherichia coli B. J Biol Chem 245:6175–6181

    Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  CAS  PubMed  Google Scholar 

  • Kohanski AM, Dwyer JD, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostenko V, Lyczak J, Turner K, Martinuzzi RJ (2010) Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 54:5120–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozicki M, Kołodziejczyk M, Szynkowska M, Matusiak A, Adamus A, Karolczak A (2016) Hydrogels made from chitosan and silver nitrate. Carbohyd Polym 140:74–87

    Article  CAS  Google Scholar 

  • Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS ONE 5:e12511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laine L, Hunt R, EI-Zimaity H, Nguyen B, Osato M, Spénard J (2003) Bismuth-based quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients. Am J Gastroenterol 98:562–567

    Google Scholar 

  • Lapara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point-source of antibiotic resistance genes into duluth-superior harbor. Environ Sci Technol 45:9543–9549

    Article  CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  PubMed  Google Scholar 

  • Lemire JA, Kalan L, Alexandru B, Turner RJ (2015) Silver oxynitrate has antimicrobial and antibiofilm efficacy. Antimicrob Agents Chemother 59:4031–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng Q, Woodle MC, Liu Y, Mixson AJ (2016) Silver adducts of four-branched histidine rich peptides exhibit synergistic antifungal activity. Biochem Biophys Res Commun 477:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li AD, Li LG, Zhang T (2015) Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front Microbiol 6:1025

    PubMed  PubMed Central  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell D (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu Y, Wu Q, Goyer R, Waalkes MP (2008) Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolitle. Perspect Pharmacol 326:363–368

    CAS  Google Scholar 

  • Lorente L, Lecuona M, Jiménez A, Lorenzo L, Santacreu R, Ramos S, Hurtado E, Buitrago M, Mora ML (2015) Efficiency of chlorhexidine-silver sulfadiazine-impregnated venous catheters at subclavian sites. Am J Infect Control 43:711–714

    Article  CAS  PubMed  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. PNAS 106:8344–8349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404:902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massè A, Bruno A, Bosetti M, Biasibetti A, Cannas M, Gallinaro P (2000) Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J Biomed Mater Res 53:600–604

    Article  PubMed  Google Scholar 

  • Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in vitro study. J Hosp Infect 68:45–51

    Article  CAS  PubMed  Google Scholar 

  • Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297

    Article  CAS  PubMed  Google Scholar 

  • Olakanmi O, Gunn JS, Su S, Soni S, Hassett DJ, Britigan BE (2010) Gallium disrupts iron uptake by intracellular and extracellular Francisella strains and exhibits therapeutic efficacy in a murine pulmonary infection model. Antimicrob Agents Chemother 54:244–253

    Article  CAS  PubMed  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705

    Article  PubMed  CAS  Google Scholar 

  • Pomposiello PJ, Bennik MHJ, Demple B (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549

    Article  CAS  PubMed  Google Scholar 

  • Ranghar S, Sirohi P, Verma P, Agarwal V (2014) Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 57:209–222

    Article  CAS  Google Scholar 

  • Reed RB, Zaikova T, Barber A, Simonich M, Lankone R, Marco M, Hristovski K, Herckes P, Passantino L, Fairbrother DH, Tanguay R, Ranville JF, Hutchison JE, Westerhoff PK (2016) Potential environmental impacts and antimicrobial efficacy of silver- and nanosilver-containing textiles. Environ Sci Technol 50:4018–4026

    Article  CAS  PubMed  Google Scholar 

  • Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Ann Rev Microbiol 55:21–48

    Article  CAS  Google Scholar 

  • Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, Van De Guchte M (2006) Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 72:5143–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodecka I, Martin C, Hill D (2014) The problem of microbial drug resistance. In: Phoenix AD, Fredrick H, Dennison RS (eds) Novel antimicrobial agents and strategies. Wiley VCH, p 439

    Google Scholar 

  • Roe D, Karandikar B, Bonn-savage N, Gibbins B, Roullet J (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS 529:86–92

    Article  CAS  Google Scholar 

  • Rudyk O, Eaton P (2014a) Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudyk O, Eaton P (2014b) Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32:445–450

    Article  PubMed  Google Scholar 

  • Saint S, Elmore JG, Sullivan SD, Emerson SS, Koepsell TD (1998) The efficacy of silver alloy-coated urinary catheters in preventing urinary tract infection: a meta-analysis. Am J Med 105:236–241

    Article  CAS  PubMed  Google Scholar 

  • Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802

    Article  CAS  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Wu J, Zhang R, Min H, Huang M (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohyd Polym 132:351–358

    Article  CAS  Google Scholar 

  • Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface. Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Swenson AM, Trivedi DV, Rauscher AA, Wang Y, Takagi Y, Palmer BM (2014) Magnesium modulates actin binding and ADP release in myosin motors. J Biol Chem 289:23977–23991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanowski R, Bekel T, Goesmann A, Krause L, Krömeke H, Kaiser O, Eichler W, Pühler A, Schlüter A (2008) Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64

    Article  CAS  PubMed  Google Scholar 

  • Tawfik SM, Hefni HH (2016) Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant-metal(II) complexes. Int J Biol Macromol 82:562–572

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2014) Heavy metals toxicity and the environment. In: Luch A (ed) Experientia supplementum. pp 133–164

    Google Scholar 

  • Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34:S1–S10

    Article  Google Scholar 

  • Thannickal VJ (2009) Oxygen in the evolution of complex life and the price we pay. Am J Respir Cell Mol Biol 40:507–510

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-itoh K, Nakashima R, Yaono R, Yoshikawa S (1994) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074

    Article  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Top Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  CAS  PubMed  Google Scholar 

  • Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radicals Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  • Warnes SL, Caves V, Keevil CW (2012) Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14:1730–1743

    Article  CAS  PubMed  Google Scholar 

  • Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77:6049–6059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilks SA, Michels H, Keevil CW (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105:445–454

    Article  CAS  PubMed  Google Scholar 

  • Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93–98

    Article  PubMed  Google Scholar 

  • Wu FYH, Wu CW (1987) Zinc in DNA replication and transcription. Ann Rev Nutr 7:251–257

    Article  CAS  Google Scholar 

  • Xu FF, Imlay JA (2012) Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol 78:3614–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. PNAS 102:5727–5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugala, N., Turner, R.J. (2018). The Potential of Metals in Combating Bacterial Pathogens. In: Rai, M., Ingle, A., Medici, S. (eds) Biomedical Applications of Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-74814-6_6

Download citation

Publish with us

Policies and ethics