Skip to main content

Mechanism of Action of Anticancer Metallodrugs

  • Chapter
  • First Online:
Book cover Biomedical Applications of Metals

Abstract

Herein the anticancer mechanisms of action from platinum and essential metals compounds are discussed. In the second half of last century, the cytotoxic activity of the cisplatin [cis-dichloro, diamin platinum (II)] was discovered and the use as anticancer drugs of this compound was proposed. For several decades, the inorganic anticancer drug seemed excellent. Nevertheless, undesired side effects such as toxicity and resistance to the drug shadowed its success. To accomplish an increased anticancer activity and a lower toxicity, several analogues such as carboplatin and oxaliplatin were developed as antineoplastic drugs. Research in the platinum metal group was developed rapidly; palladium, ruthenium, osmium, and rhodium. However, an innovative approach was developed by the use of essential metals compounds as an alternative to reduce the toxicity and resistance induced by the platinum compounds. Iron and copper were the first essential metal compounds studied. The term “metals” in medicine was emerging at that moment and later on, the term Metallodrug was acquired. Some other essential metals have been studied and proposed as metallodrugs. Regarding the mechanism of action, at first, interaction with DNA was thoroughly studied and research leads to the proposal of adducts formation by direct bond between platinum and DNA bases mainly. Later on, cell death by means of apoptosis was mentioned, and therefore, the formation of reactive species of oxygen was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbale CM, Cardoso MH, Galyuon IK, Franco OL (2016) Designing metallodrugs with nuclease and protease activity. Metallomics 8(11):1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Alves SRR, Abbasi AZ, Ribeiro G, Ahmed T, Wu XY, de Oliveira Silva D (2017) Diruthenium (II, III) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer-lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. Nanoscale 9(30):10701–10714

    Article  Google Scholar 

  • Anderson H, Wagstaff J, Crowther D, Swindell R, Lind MJ, McGrego RJ, Timms MS, Brown D, Palmer P (1988) Comparative toxicity of cisplatin, carboplatin (CBDCA) and iproplatin (CHIP) in combination with cyclophosphamide in patients with advanced epithelial ovarian cancer. Eur J Cancer Clinical Oncology 24(9):1471–1479

    Article  CAS  Google Scholar 

  • Araujo TP, Gandin V, Kavanagh P, Braude JP, Nodari L, Montagner D, Erxleben A (2016) DNA binding, cleavage and cytotoxicity of a novel dimetallic Fe(III) triaza-cyclononane complex. Inorg Chim Acta 452:170–175

    Article  Google Scholar 

  • Arion VB, Dobrov A, Göschl S, Jakupec MA, Keppler BK, Rapta P (2012) Ruthenium- and osmium-arene-based paullones bearing a TEMPO free-radical unit as potential anticancer drugs. Chem Commun 48(68):8559–8561

    Article  CAS  Google Scholar 

  • Arredondo A, Nuñez M (2005) Iron and copper metabolism. Mol Aspects Med 26:313–325

    Article  CAS  PubMed  Google Scholar 

  • Auzzas L, Zanardi F, Battistini L, Burreddu P, Carta P, Rassu G, Curti C, Casiraghi G (2010) Targeting αvβ3 integrin: design and applications of mono-and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 17(13):1255–1299

    Article  CAS  PubMed  Google Scholar 

  • Babak MV, Plażuk D, Meier SM, Arabshahi HJ, Reynisson J, Rychlik B, Błauż A, Szulc K, Hanif M, Strobl S, Roller A, Keppler BK, Hartinger CG (2015) Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells. Chemistry 21(13):5110–5117

    Article  CAS  PubMed  Google Scholar 

  • Barragán F, López-Senín P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchán V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium (II) complex. J Am Chem Soc 133(35):14098–14108

    Article  PubMed  Google Scholar 

  • Barry NP, Sadler PJ (2012) Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies. Chem Soc Rev 41(8):3264–3279

    Article  CAS  PubMed  Google Scholar 

  • Barry NP, Sadler PJ (2013) Challenges for metals in medicine: how nanotechnology may help to shape the future. ACS Nano 7(7):5654–5659

    Article  CAS  PubMed  Google Scholar 

  • Barry NP, Sadler PJ (2014) 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs. Pure Appl Chem 86(12):1897–1910

    Article  CAS  Google Scholar 

  • Becco L, García-Ramos JC, Ruiz-Azuara L, Gambino D, Garat B (2012) New achievements on biological aspects of copper complexes Casiopeínas®: interaction with DNA and proteins and anti-Trypanosoma cruzi activity. J Inorg Biochem 109:45–49

    Article  Google Scholar 

  • Bergamo A, Sava G (2007) Ruthenium complexes can target determinants of tumour malignancy. Dalton Trans 13:1267–1272

    Article  Google Scholar 

  • Bergamo A, Sava G (2011) Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans 40(31):7817–7823

    Article  CAS  PubMed  Google Scholar 

  • Bergamo A, Gaiddon C, Schellens JH, Beijnen JH, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106(1):90–99

    Article  CAS  PubMed  Google Scholar 

  • Brabec V (2000) Chemistry and structural biology of 1,2-interstrand adducts of cisplatin. In: Kelland LR, Farrell NP (eds) 2000 Platinum-based drugs in cancer therapy. Humana Press Inc, Totowa/NJ, pp 37–61

    Chapter  Google Scholar 

  • Braddock PD, Connors TA, Jones M, Khokhar AR, Melzack DH, Tobe ML (1975) Structure and activity relationships of platinum complexes with anti-tumour activity. Chem Biol Interact 11(3):145–161

    Article  CAS  PubMed  Google Scholar 

  • Bramwell VH, Crowther D, O’Malley S, Swindell R, Johnson R, Cooper EH, Thatcher N, Howell A (1985) Activity of JM9 in advanced ovarian cancer: a phase I-II trial. Cancer Treat Rep 69(4):409–416

    CAS  PubMed  Google Scholar 

  • Bravo-Gómez ME, Dávila-Manzanilla S, Flood-Garibay J, Muciño-Hernández MA, Mendoza A, García-Ramos JC, Moreno-Esparza R, Ruiz-Azuara L (2012) Secondary ligand effects on the cytotoxicity of several Casiopeína’s group II compounds. J Mex Chem Soc 56:85–92

    Google Scholar 

  • Bravo-Gómez ME, García-Ramos JC, Gracia-Mora I, Ruiz-Azuara L (2009) Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N) (acetylacetonate)] NO3 and [Cu(N-N)(glycinate)] NO3 complexes, (Casiopeínas®). J Inorg Biochem 103:299–309

    Article  PubMed  Google Scholar 

  • Bravo-Gómez ME, Hernández de la Paz AL, Gracia-Mora I (2013) Antineoplastic evaluation of two mixed chelate copper complexes (Casiopeínas®) in HCT-15 xenograft model. J Mexican Chem Soc 57(3):205–211

    Google Scholar 

  • Buettner KM, Valentine AM (2012) Bioinorganic chemistry of titanium. Chem Rev 112(3):1863–1881

    Article  CAS  PubMed  Google Scholar 

  • Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RHJ, Wiemer EAC (2011) Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updates 14:22–34

    Article  CAS  Google Scholar 

  • Butler JS, Sadler PJ (2013) Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 17(2):175–188

    Article  CAS  PubMed  Google Scholar 

  • Carvallo-Chaigneau F, Trejo-Solís C, Gómez-Ruiz C, Rodríguez-Aguilera E, Macías-Rosales L, Cortés-Barberena E, Cedillo-Peláez C, Gracia-Mora I, Ruiz-Azuara L, Madrid-Marina V, Constantino-Casas F (2008) Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals 21:17–28

    Article  CAS  PubMed  Google Scholar 

  • Casini A, Reedijk J (2012) Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry. Chem Sci 3:3135–3144

    Article  CAS  Google Scholar 

  • Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ (2002) Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 124(12):3064–3082

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM (2001) Alternative models for carcinogenicity testing: weight of evidence evaluations across models. Toxicological Pathology 29(Suppl):183–190

    Article  CAS  Google Scholar 

  • Correa RS, de Oliveira KM, Delolo FG, Alvarez A, Mocelo R, Plutin AM, Cominetti MR, Castellano EE, Batista AA (2015) Ru(II)-based complexes with N-(acyl)-N′, N′-(disubstituted)thiourea ligands: synthesis, characterization, BSA- and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells. J Inorg Biochem 150:63–71

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JJRF, Williams JRP (1991) The biological chemistry of the elements. Oxford University Press, Canada

    Google Scholar 

  • Danhier F, Le Breton A, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973

    Article  CAS  PubMed  Google Scholar 

  • Dickerson M, Sun Y, Howerton B, Glazer EC (2014) Modifying charge and hydrophilicity of simple Ru(II) polypyridyl complexes radically alters biological activities: old complexes, surprising new tricks. Inorg Chem 53(19):10370–10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilruba SG, Kalayda V (2016) Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol 77:1103–1124

    Article  CAS  PubMed  Google Scholar 

  • Espina M, Corte-Rodríguez M, Aguado L, Montes-Bayón M, Sierra MI, Martínez-Camblor P, Blanco-González E, Sierra LM (2017) Cisplatin resistance in cell models: evaluation of metallomic and biological predictive biomarkers to address early therapy failure. Metallomics 9:564

    Article  CAS  PubMed  Google Scholar 

  • Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 48:10690–10701

    Article  Google Scholar 

  • Farrer NJ, Woods JA, Salassa L, Zhao Y, Robinson KS, Clarkson G, Mackay FS, Sadler PJ (2010) A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angewandte Chemie Int Ed (English) 49(47):8905–8908

    Article  CAS  Google Scholar 

  • Florindo PR, Pereira DM, Borralho PM, Rodrigues CM, Piedade MF, Fernandes AC (2015) Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents. J Med Chem 58(10):4339–4347

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Habtemariam A, Basri AM, Braddick D, Clarkson GJ, Sadler PJ (2011) Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity. Dalton Trans 40(40):10553–10562

    Article  CAS  PubMed  Google Scholar 

  • Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124(3):511–515

    Article  CAS  PubMed  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Murillo R, Garcia-Ramos JC, Ruiz-Azuara L, Cheatham TE, Cortes-Guzman F (2015) Intercalation processes of copper complexes in DNA. Nucleic Acids Res 43:5364–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortés-Guzmán F (2012) Molecular recognition between DNA and a copper-based anticancer complex. Phys Chem Chem Phys 14:15539

    Article  CAS  PubMed  Google Scholar 

  • Gandioso A, Shaili E, Massaguer A, Artigas G, Gonzalez-Canto A, Woods JA, Sadler PJ, Marchán V (2015) An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem Commun 51:9169

    Article  CAS  Google Scholar 

  • García-Ramos JC, Galindo-Murillo R, Tovar-Tovar A, Alonso-Saenz AL, Gómez-Vidales V, Flores-Alamo M, Ortiz-Frade L, Cortes-Guzmán F, Moreno-Esparza R, Campero A, Ruiz-Azuara L (2014) The p-back-bonding modulation and its impact in the electronic properties of CuII antineoplastic compounds: an experimental and theoretical study. Chem Euro J 20(42):13730–13741

    Article  Google Scholar 

  • García-Ramos JC, Gutiérrez A, Vázquez-Aguirre A, Toledano-Magaña Y, Alonso-Sáenz AL, Gómez-Vidales V, Flores-Alamo M, Mejía C, Ruiz-Azuara L (2017) The mitochondrial apoptotic pathway is induced by Cu(II) antineoplastic compounds (Casiopeínas®) in SK-N-SH neuroblastoma cells after short exposure times. Biometals 30:43–58

    Article  PubMed  Google Scholar 

  • Giacomini KM, Balimane PV, Cho SK, Eadon M, Edeki T, Hillgren KM, Huang SM, Sugiyama Y, Weitz D, Wen Y, Xia CQ, Yee SW, Zimdahl H, Niemi M (2013) International Transporter Consortium commentary on clinically important transporter polymorphisms. Clin Pharmacol Ther 94(1):23–26

    Article  CAS  PubMed  Google Scholar 

  • Heffeter P, Riabtseva A, Senkiv Y, Kowol CR, Körner W, Jungwith U, Mitina N, Keppler BK, Konstantinova T, Yanchuk I, Stoika R, Zaichenko A, Berger W (2014) Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019. J Biomed Nanotechnol 10(5):877–884

    Article  CAS  PubMed  Google Scholar 

  • Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49(26):7792–7798

    Article  CAS  PubMed  Google Scholar 

  • Hervouet E, Cheray M, Vallette FM, Cartron PF (2013) DNA methylation and apoptosis resistance in cancer cells. Cells 2(3):545–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H (2014) Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J Med Chem 57(21):8971–8983

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Wallqvist A, Covell DG (2005) Anticancer metal compounds in NCI’s tumor screening database: putative mode of action. Biochem Pharmacol 69:1009–1039

    Article  CAS  PubMed  Google Scholar 

  • Johnstone TC, Kulak N, Pridgen EM, Farokhzad OC, Langer R, Lippard SJ (2013) Nanoparticle encapsulation of mitaplatin and the effect thereof on in vivo properties. ACS Nano 7(7):5675–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116(5):3436–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachadourian R, Brechbuhl HM, Ruiz-Azuara L, Gracia-Mora I, Day BJ (2010) Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268:176–183

    Article  CAS  PubMed  Google Scholar 

  • Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V (2015) A photoactivatable platinum(IV) complex targeting genomic DNA and histone deacetylases. Angew Chem Int Ed Engl 54(48):14478–14482

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogénesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  • Lemaire MA, Schwartz A, Rahmouni AR, Leng M (1991) Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc National Acad Sci USA 88(5):1982–1985

    Article  CAS  Google Scholar 

  • Linder MC (2002) Biochemistry and molecular biology of cooper in mammals. In: Massaro EJ (ed) Handbook of copper pharmacology and toxicology. Humana Press New Jersey, USA, pp 3–32

    Chapter  Google Scholar 

  • Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 3(5):472–487

    Article  CAS  PubMed  Google Scholar 

  • Lopes EDO, Oliveira CGD, Silva PBD, Eismann CE, Suárez CA, Menegário AA, Pavan FR (2016) Novel zinc(II) complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: in vitro and in vivo antiproliferative studies. Int J Mol sciences 17(5):781

    Article  Google Scholar 

  • Mackay FS, Woods JA, Heringová P, Kaspárková Pizarro AM, Moggach SA, Parsons S, Brabec V, Sadler PJ (2007) A potent cytotoxic photoactivated platinum complex. Proc National Acad Sci USA 104(52):20743–20748

    Article  CAS  Google Scholar 

  • Mari C, Gasser G (2015) Lightening up ruthenium complexes to fight cancer? Chimia (Aarau) 69(4):176–181

    Article  CAS  Google Scholar 

  • Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14(5):1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Massaguer A, González-Cantó A, Escribano E, Barrabés S, Artigas G, Moreno V, Marchán V (2015) Integrin-targeted delivery into cancer cells of a Pt(IV) pro-drug through conjugation to RGD-containing peptides. Dalton Trans 44(1):202–212

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Barnés CM, Haskel A, Short SM, Barnes KR, Lippard SJ (2008) Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug Chem 19(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Nardon C, Boscutti G, Fregona D (2014) Beyond platinums: gold complexes as anticancer agents. Anticancer Res 34(1):487–492

    CAS  PubMed  Google Scholar 

  • Nijwening JH, Kuiken HJ, Beijersbergen RL (2011) Screening for modulators of cisplatin sensitivity: unbiased screens reveal common themes. Cell Cycle 10(3):380–386

    Article  CAS  PubMed  Google Scholar 

  • Offer T, Russo A, Samuni A (2000) The pro-oxidative activity of SOD and nitroxide SOD mimics. FASEB J 14(9):1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Palermo G, Magistrato A, Riedel T, von Erlach T, Davey CA, Dyson PJ, Rothlisberger U (2016) Fighting cancer with transition metal complexes: from naked DNA to protein and chromatin targeting strategies. ChemMedChem 11(12):1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Pernot M, Bastogne T, Barry NP, Therrien B, Koellensperger G, Hann S, Reshetov V, Barberi-Heyob M (2012) Systems biology approach for in vivo photodynamic therapy optimization of ruthenium-porphyrin compounds. J Photochemistry Photobiology B 117:80–89

    Article  CAS  Google Scholar 

  • Petzold H, Sadler PJ (2008) Oxidation induced by the antioxidant glutathione (GSH). Chem Commun (Cambridge) 37:4413–4415

    Article  Google Scholar 

  • Pracharova J, Radošová-Muchová T, Tomastikova ED, Intini FP, Pacifico C, Natile G, Kasparkovab J, Brabec V (2016) Anticancer potential of a photoactivated transplatin derivative containing the methylazaindole ligand mediated by ROS generation and DNA cleavage. Dalton Trans 45:13179–13186

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Singh S, Draca D, Kate A, Kumbhar A, Kumbhar AS, Maksimovic-Ivanic D, Mijatovic S, Lönneckea P, Hey-Hawkins E (2016) Antiproliferative activity of ruthenium(II) arene complexes with mono- and bidentate pyridine-based ligands. Dalton Trans 45:13114–13125

    Article  CAS  PubMed  Google Scholar 

  • Romero-Canelón I, Pizarro AM, Habtemariam A, Sadler PJ (2012) Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes. Metallomics 4(12):1271–1279

    Article  PubMed  Google Scholar 

  • Romero-Canelón I, Salassa L, Sadler PJ (2013) The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J Med Chem 56(3):300–1291

    Article  Google Scholar 

  • Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 13(205):698–699

    Article  Google Scholar 

  • Ruiz-Azuara L (1996) Process to obtain new mixed copper aminoacidate from methylate phenanthroline complexes to be used as anticancerigenic agents. USA, Patent No. 5,576,326 (07/628,628). 1992

    Google Scholar 

  • Ruiz-Azuara L (1997) Process to obtain new mixed copper amino acidatecomplexes from phenylatephenanthroline to be used as anticancerigenic agents. Patent No. 07/628843, US5107005 A, 1992, RE 35458, US RE35, 458E

    Google Scholar 

  • Ruiz-Azuara L, Bravo ME (2010) Copper compounds in cancer chemotherapy. Curr Med Chem 17(31):3606–3615

    Article  CAS  PubMed  Google Scholar 

  • Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862

    Article  CAS  PubMed  Google Scholar 

  • Serment-Guerrero J, Bravo-Gomez ME, Lara-Rivera E, Ruiz-Azuara L (2017) Genotoxic assessment of the copper chelated compounds casiopeinas: clues about their mechanisms of action. J Inorg Biochem 166:68–75

    Article  CAS  PubMed  Google Scholar 

  • Siewert B, van Rixel VH, van Rooden EJ, Hopkins SL, Moester MJ, Ariese F, Siegler MA, Bonnet S (2016) Chemical swarming: Depending on concentration, an amphiphilic ruthenium polypyridyl complex induces cell death via two different mechanisms. Chem Euro J 22(31):10960–10968

    Article  CAS  Google Scholar 

  • Smith NA, Sadler PJ (2013) Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Philos Trans Mathe Phys Eng Sci 371. https://doi.org/10.1098/rsta.2012.0519

  • Smith R, Huskens D, Daelemans D, Mewis RE, Garcia CD, Cain AN, Freeman TN, Pannecouque C, De Clercq E, Schols D, Hubin TJ, Archibald SJ (2012) CXCR4 chemokine receptor antagonists: nickel(II) complexes of configurationally restricted macrocycles. Dalton Trans 41(37):11369–11377

    Article  CAS  PubMed  Google Scholar 

  • Soldevila-Barreda JJ, Romero-Canelón I, Habtemariam A, Sadler PJ (2015) Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun 6:6582. https://doi.org/10.1038/ncomms7582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spreckelmeyer S, Orvig Ch, Casini A (2014) Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 19:15584–15610

    Article  PubMed  Google Scholar 

  • Sun W, Li S, Häupler B, Liu J, Jin S, Steffen W, Schubert US, Butt HJ, Liang XJ, Wu S (2017) An amphiphilic ruthenium polymetallodrug for combined photodynamic therapy and photochemotherapy in vivo. Adv Mater 29(6). https://doi.org/10.1002/adma.201603702

  • Suntharalingam K, Awuah SG, Bruno PM, Johnstone TC, Wang F, Lin W, Zheng YR, Page JE, Hemann MT, Lippard SJ (2015) Necroptosis-inducing rhenium(V) oxo complexes. J Am Chem Soc 137(8):2967–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Süss-Fink G (2010) Arene ruthenium complexes as anticancer agents. Dalton Trans 39(7):1673–1688

    Article  PubMed  Google Scholar 

  • Suy S, Mitchell JB, Ehleiter D, Haimovitz-Friedman A, Kasid U (1998) Nitroxides tempol and tempo induce divergent signal transduction pathways in MDA-MB 231 breast cancer cells. J Biol Chem 273(28):17871–17878

    Article  CAS  PubMed  Google Scholar 

  • Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resistance Update 8(6):381–402

    Article  CAS  Google Scholar 

  • Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1(4):280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Veer JL, Peters AR, Reedijk J (1986) Reaction products from platinum(IV) amine compounds and 5′-GMP are mainly bis(5′-GMP)platinum (II) amine adducts. J Inorg Biochem 26(2):137–142

    Article  PubMed  Google Scholar 

  • Venkatesh V, Wedge CJ, Romero-Canelón I, Habtemariama A, Sadler PJ (2016) Spin-labelled photo-cytotoxic diazido platinum(IV) anticancer complex. Dalton Trans 45:13034–13037

    Article  CAS  PubMed  Google Scholar 

  • Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, Lacorte JM, Staedel C, Lesuffleur T (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98(4):498–504

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen H, Parsons S, Oswald ID, Davidson JE, Sadler PJ (2003) Kinetics of aquation and anation of ruthenium(II) arene anticancer complexes, acidity and X-ray structures of aqua adducts. Chemistry 9(23):5810–5820

    Article  CAS  PubMed  Google Scholar 

  • Westendorf AF, Woods JA, Korpis K, Farrer NJ, Salassa L, Robinson K, Appleyard V, Murray K, Grünert R, Thompson AM, Sadler PJ, Bednarski PJ (2012) Trans, trans, trans-[PtIV(N3)2(OH)2(py)(NH3)]: a light-activated antitumor platinum complex that kills human cancer cells by an apoptosis-independent mechanism. Mol Cancer Ther 11(9):1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Lei Z, Wang X, Zhu F, Chen D (2015) Ruthenium complex Λ-WH0402 induces hepatocellular carcinoma LM6 (HCCLM6) cell death by triggering the beclin-1-dependent autophagy pathway. Metallomics 7(5):896–907

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chen S, Paunesku T, Gleber SC, Liu WC, Doty CB, Mak R, Deng J, Jin Q, Lai B, Brister K, Flachenecker C, Jacobsen C, Vogt S, Woloschak GE (2013) Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 7(12):10502–10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS (2017) The development of anticancer ruthenium (ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 46(19):5771–5804

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Dong X (2009) Interaction of DNA with a novel photoactive platinum diimine complex. Biometals 22(2):283–288

    Google Scholar 

  • Zhang Z, Dai R, Ma J, Wang S, Wei X, Wang H (2015) Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex. J Inorg Biochem 143:64–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Mejía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mejía, C., Ortega-Rosales, S., Ruiz-Azuara, L. (2018). Mechanism of Action of Anticancer Metallodrugs. In: Rai, M., Ingle, A., Medici, S. (eds) Biomedical Applications of Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-74814-6_10

Download citation

Publish with us

Policies and ethics