Skip to main content

Computation of Current Density in Double Well Resonant Tunneling Diode Using Self-consistency Technique

  • Conference paper
  • First Online:
Modelling and Simulation in Science, Technology and Engineering Mathematics (MS-17 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 749))

Included in the following conference series:

Abstract

Theoretical computation is performed on the electrical performance of the double well resonant tunneling diode for different quantum sizes of the constituent layers, Self-consistency technique is adopted for simulation to determine the oscillating behavior of the current density, and high doping is considered at the contact ends. Two different set of dimensions are taken for analysis, and comparatives study speaks in favor of lower barrier dimension for higher current density; whereas larger layer widths gives consistent flat response. Temperature variation is also considered for practical application in nanoelectronic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Goldhaber-Gordon, M.S. Montemerlo, J.C. Love, G.J. Opiteck, J.C. Ellenbogen, Overview of nanoelectronic devices. Proc. IEEE 85, 521–540 (1997)

    Article  Google Scholar 

  2. S. Sen, F. Capasso, A.C. Gossard, R.A. Spah, A.I. Hutchinson, S.N.G. Chu, Observation of resonant tunneling through a compositionally graded parabolic quantum well. Appl. Phys. Lett. 51, 1428–1430 (1987)

    Article  Google Scholar 

  3. L. Esaki, L.L. Chang, New transport phenomenon in semiconductor superlattice. Phys. Rev. Lett. 33, 495–498 (1974)

    Article  Google Scholar 

  4. K. Talele, D.S. Patil, Analysis of wavefunction, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures. Prog. Electromagn. Res. 81, 237–252 (2008)

    Article  Google Scholar 

  5. C.E. Simion, C.I. Ciucu, Triple-barrier resonant tunneling: a transfer matrix approach. Rom. Rep. Phys. 59, 805–817 (2007)

    Google Scholar 

  6. A.K. Ghatak, K. Thyagarajan, M.R. Shenoy, A novel numerical technique for solving the one-dimensional Schrödinger equation using matrix approach—application to quantum well structures. IEEE J. Quantum Electron. 24, 1524–1531 (1988)

    Article  Google Scholar 

  7. L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Div. 14, 61–65 (1988)

    Article  Google Scholar 

  8. L.A. Chanda, L.F. Eastman, Quantum mechanical reflection at triangular planar-doped’ potential barriers for transistors. J. Appl. Phys. 53, 9165–9169 (1982)

    Article  Google Scholar 

  9. D.N. Christodoulides, A.G. Andreou, R.I. Joseph, C.R. Westgate, Analytical calculation of the quantum mechanical transmission coefficient for a triangular, planar-doped potential barrier. Solid State Electron. 28, 821–822 (1985)

    Article  Google Scholar 

  10. L. Scandella, H.J. Güntherodt, Field emission resonances studied with dI/ds(V) and dI/dV(V) curves. Ultramicroscopy 42, 546–552 (1992)

    Article  Google Scholar 

  11. L.L. Chang, L. Esaki, R. Tsu, Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593–595 (1974)

    Article  Google Scholar 

  12. M.A. Reed, R.J. Koestner, M.W. Goodwin, Resonant tunneling through a HeTe/Hg1−xCdxTe double barrier, single quantum well structure. J. Vac. Sci. Technol. A 5, 3147–3149 (1986)

    Article  Google Scholar 

  13. R. Wessel, M. Alterelli, Quasi stationary energy level calculation for thin double barrier GaAs-Ga1−xAlxAs Heterostructures. Phys. Rev. B 39, 10246–10250 (1989)

    Article  Google Scholar 

  14. V.A. Petrov, A.V. Nikitin, in Penetration of quantum mechanical current density under semi-infinite rectangular potential barrier as the consequence of the interference of the electron waves in semiconductor 2D nanostructures. Proceedings of SPIE, vol. 7521 (2009)

    Google Scholar 

  15. Y. Song, A transition layer model and its application to resonant tunneling in heterostructures. Phys. Lett. A 216, 183–186 (1996)

    Article  Google Scholar 

  16. A. Al-Muhanna, A. Alharbi, A. Salhi, Waveguide design optimization for long wavelength semiconductor lasers with low threshold current and small beam divergence. J. Mod. Phys. 2, 225–230 (2011)

    Article  Google Scholar 

  17. K.J.P. Jacobs, B.J. Stevens, R.A. Hogg, Photoluminescence characterization of high current density resonant tunneling diodes for terahertz applications. IEICE Trans. Electron. E99.C(2), 181–188 (2016)

    Article  Google Scholar 

  18. Z. Li, H. Tang, H. Liu, Y. Liang, Q. Li, N. An, J. Zeng, W. Wang, Y.Z. Xiong, Improving the peak current density of resonant tunneling diode based on InP substrate. J. Semicond. 38(6), 064005 (2017)

    Article  Google Scholar 

  19. C.C. Yang, Y.K. Su, T.C. Chang, Optimum current-voltage characteristics of GaAs/AlAs intraband microwave devices. IET Micro. Nano. Lett. 10(9), 472–475 (2015)

    Article  Google Scholar 

  20. K.J.P. Jacobs, B.J. Stevens, O. Wada, T. Mukai, D. Ohnishi, R.A. Hogg, A dual-pass high current density resonant tunneling diode for terahertz wave applications. IEEE Electron. Device Lett. 36(12), 1295–1298 (2015)

    Article  Google Scholar 

  21. G. Keller, A. Tchegho, B. Munstermann, W. Prost, F.J. Tegude, M. Suhara, in Triple barrier resonant tunneling diodes for microwave signal generation and detection. European Microwave Integrated Circuits Conference (EuMIC), 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Deyasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karmakar, B., Lodh, R., Biswas, P., Ghosal, S., Deyasi, A. (2019). Computation of Current Density in Double Well Resonant Tunneling Diode Using Self-consistency Technique. In: Chattopadhyay, S., Roy, T., Sengupta, S., Berger-Vachon, C. (eds) Modelling and Simulation in Science, Technology and Engineering Mathematics. MS-17 2017. Advances in Intelligent Systems and Computing, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-74808-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74808-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74807-8

  • Online ISBN: 978-3-319-74808-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics