The Standard Model of the Electroweak Interaction

  • Samoil Bilenky
Part of the Lecture Notes in Physics book series (LNP, volume 947)


We will consider here the Glashow-Weinberg-Salam theory of the weak and electromagnetic interactions, which usually is called the Standard Model (SM). This theory is one of the greatest achievements of particle physics of the twentieth century. The SM predicted the existence of new particles (charmed, bottom, top), a new class of the weak interaction (Neutral currents), W± and Z0 vector bosons and masses of these particles, the existence of the third type of neutrino (ν τ ), the existence of the scalar Higgs boson etc. All predictions of the Standard Model are in perfect agreement with existing experimental data. In 2012 in the ATLAS and CMS experiments at LHC (CERN) a scalar particle with the mass ≃ 125 GeV was discovered. All existing data (production cross section, decay rates) are compatible with the assumption that the discovered particle is the predicted by the Standard Model Higgs boson.


  1. 1.
    J. Chadwick, Intensitätavertailung im magnetischen Spektren der β-Strahlen von Radium B+C. Verh. Deutsch. Phys. Ges. 16, 383 (1914)Google Scholar
  2. 2.
    C.D. Ellis, W.A. Wooster, Proc. R. Soc. A 117, 109 (1927)Google Scholar

The Discovery of the Neutron

  1. 3.
    J. Chadwick, Possible existence of a neutron. Nature 192, 312 (1932)Google Scholar

The First Theory of the β-Decay

  1. 4.
    E. Fermi, An attempt of a theory of beta radiation. Z. Phys. 88, 161 (1934)Google Scholar
  2. 5.
    G. Gamow, E. Teller, Selection rules for the β-disintegration. Phys. Rev. 49, 895 (1936)Google Scholar
  3. 6.
    F. Perrin, C. R. 197, 1625 (1933)Google Scholar

Majorana Neutrino

  1. 7.
    E. Majorana, Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 14, 171 (1937)Google Scholar
  2. 8.
    G. Racah, On the symmetry of particle and antiparticle. Nuovo Cim. 14, 322 (1937)Google Scholar

Neutrinoless Double β-Decay

  1. 9.
    W.H. Furry, On transition probabilities in double beta-disintegration. Phys. Rev. 56, 1184 (1939)Google Scholar

Intermediate Vector Boson

  1. 10.
    O. Klein, in Proceedings of Symposium on Les Nouvelles Theories de la Physique, Warsaw (World Scientific, Singapore, 1991); Reprinted in O. Klein Memorial Lectures, vol. 1, ed. by G. EkspongGoogle Scholar

Radiochemical Method of the Neutrino Detection

  1. 11.
    B. Pontecorvo, Inverse β-process. Report PD-205, Chalk River Laboratory (1946)Google Scholar

Neutrino Discovery

  1. 12.
    F. Reines, C.L. Cowan, Detection of the free neutrino. Phys. Rev. 92, 830 (1953)Google Scholar
  2. 13.
    F. Reines, C.L. Cowan, The neutrino. Nature 178, 446 (1956)Google Scholar
  3. 14.
    F. Reines, C.L. Cowan, Free anti-neutrino absorption cross-section. 1: Measurement of the free anti-neutrino absorption cross-section by protons. Phys. Rev. 113, 273 (1959)Google Scholar

Discovery of the Parity Violation in the Weak Interaction

  1. 15.
    T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254 (1956)Google Scholar
  2. 16.
    C.S. Wu et al., An experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957)Google Scholar
  3. 17.
    R.L. Garwin, L.M. Lederman, W. Weinrich, Observation of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415 (1957)Google Scholar
  4. 18.
    V.L. Telegdi, A.M. Friedman, Nuclear emulsion evidence for parity nonconservation in the decay chain π + − μ + − e +. Phys. Rev. 105, 1681 (1957)Google Scholar

Two-Component Neutrino Theory

  1. 19.
    L.D. Landau, On the conservation laws for weak interactions. Nucl. Phys. 3, 127 (1957)Google Scholar
  2. 20.
    T.D. Lee, C.N. Yang, Parity nonconservation and a two component theory of the neutrino. Phys. Rev. 105, 1671 (1957)Google Scholar
  3. 21.
    A. Salam, On parity conservation and neutrino mass. Nuovo Cim. 5, 299 (1957)Google Scholar

Measurement of the Neutrino Helicity

  1. 22.
    M. Goldhaber, L. Grodzins, A.W. Sunyar, Helicity of neutrinos. Phys. Rev. 109, 1015 (1958)Google Scholar

The Current × Current, V − A Theory of the Weak Interaction

  1. 23.
    R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958)Google Scholar
  2. 24.
    E.C.G. Sudarshan, R.E. Marshak, Chirality invariance and the universal Fermi interaction. Phys. Rev. 109, 1860 (1958)Google Scholar

Accelerator Neutrinos and Discovery of the Muon Neutrino

  1. 25.
    B. Pontecorvo, Electron and muon neutrinos. Sov. Phys. JETP 10, 1236 (1960)Google Scholar
  2. 26.
    M. Schwartz, Feasibility of using high-energy neutrinos to study the weak interactions. Phys. Rev. Lett. 4, 306 (1960)Google Scholar
  3. 27.
    M.A. Markov, Neutrino (Nauka, Moscow, 1964, in Russian); On High-Energy Neutrino Physics preprint JINR-D577 (1960, in Russian)Google Scholar
  4. 28.
    G. Feinberg, Decay of μ-mesonin the intermediate-meson theory. Phys. Rev. 110, 148 (1958)Google Scholar
  5. 29.
    G. Danby, J.-M. Gaillard, K. Goulianos, L.M. Lederman, N. Mistry, M. Schwartz, J. Steinberger, Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett. 9, 36 (1962)Google Scholar

The Standard Model

  1. 30.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579 (1961)Google Scholar
  2. 31.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)Google Scholar
  3. 32.
    A. Salam, Weak and electromagnetic interactions, in Proceedings of the Eighth Nobel Symposium, ed. by N. Svartholm (Wiley, New York, 1968)Google Scholar

The Brout-Englert-Higgs Mechanism of the Spontaneous Symmetry Breaking

  1. 33.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)Google Scholar
  2. 34.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)Google Scholar
  3. 35.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)Google Scholar
  4. 36.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)Google Scholar
  5. 37.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys Rev. Lett. 13, 585 (1964)Google Scholar
  6. 38.
    T.W.B. Kibble, Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554 (1967)Google Scholar

CKM Quark Mixing

  1. 39.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963)Google Scholar
  2. 40.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton—hadron symmetry. Phys. Rev. D 2, 1258 (1970)Google Scholar
  3. 41.
    M. Kobayashi, K. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973)Google Scholar

Discovery of the Neutral Current Processes

  1. 42.
    F.J. Hasert et al., Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment. Phys. Lett. B 46, 138 (1973)Google Scholar
  2. 43.
    A.C. Benvenuti et al., Observation of muonless neutrino induced inelastic interactions. Phys. Rev. Lett. 32, 800 (1974)Google Scholar

Discovery of the W± and Z0 Bosons

  1. 44.
    G. Arnison et al. [UA1 Collaboration], Further evidence for charged intermediate vector bosons at the SPS collider. Phys. Lett. B 129, 273 (1983)Google Scholar
  2. 45.
    G. Arnison et al. [UA1 Collaboration], Experimental observation of isolated large transverse energy electrons with associated missing energy at s**(1/2) = 540-GeV. Phys. Lett. B 122, 103 (1983)Google Scholar
  3. 46.
    G. Arnison et al. [UA1 Collaboration], Associated production of an isolated large transverse momentum lepton (electron or muon), and two jets at the CERN p anti-p collider. Phys. Lett. B 147, 493 (1984)Google Scholar
  4. 47.
    P. Bagnaia et al. [UA2 Collaboration], Evidence for Z 0 → e + + e at the CERN anti-p p collider. Phys. Lett. B 129, 130 (1983)Google Scholar

Discovery of the Higgs Boson

  1. 48.
    S. Chatrchyan et al. [CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)Google Scholar
  2. 49.
    G. Aad et al. [ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012)Google Scholar

PMNS Neutrino Mixing

  1. 50.
    B. Pontecorvo, Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957); Zh. Eksp. Teor. Fiz. 33, 549 (1957)Google Scholar
  2. 51.
    B. Pontecorvo, Inverse β-processes and non conservation of lepton charge. Sov. Phys. JETP 7, 172 (1958); Zh. Eksp. Teor. Fiz. 34, 247 (1958)Google Scholar
  3. 52.
    Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870 (1962)Google Scholar

Neutrino Oscillations in Vacuum

  1. 53.
    B. Pontecorvo, Neutrino experiments and the question of the lepton charge conservation. Sov. Phys. JETP 26, 984 (1968); Zh. Eksp. Teor. Fiz. 53, 1717 (1967)Google Scholar
  2. 54.
    V.N. Gribov, B. Pontecorvo, Neutrino astronomy and lepton charge. Phys. Lett. B 28, 493 (1969)Google Scholar
  3. 55.
    S.M. Bilenky, B. Pontecorvo, Quark-lepton analogy and neutrino oscillations. Phys. Lett. B 61, 248 (1976)Google Scholar
  4. 56.
    H. Fritzsch, P. Minkowski, Vector—like weak currents, massive neutrinos, and neutrino beam oscillations. Phys. Lett. B 62, 72 (1976)Google Scholar
  5. 57.
    S. Eliezer, A.R. Swift, Experimental consequences of ν e − ν μ mixing for neutrino beams. Nucl. Phys. B 105, 45 (1976)Google Scholar
  6. 58.
    S.M. Bilenky, B. Pontecorvo, Again on neutrino oscillations. Nuovo Cim. Lett. 17, 569 (1976)Google Scholar

Neutrino Transitions in Matter. MSW Effect

  1. 59.
    L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978)Google Scholar
  2. 60.
    S.P. Mikheev, A.Yu. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. J. Nucl. Phys. 42, 913 (1985)Google Scholar
  3. 61.
    S.P. Mikheev, A.Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo Cim. C9, 17 (1986)Google Scholar

Seesaw Mechanism

  1. 62.
    P. Minkowski, μ →  at a rate of one out of 1-billion muon decays?. Phys. Lett. B 67, 421 (1977)Google Scholar
  2. 63.
    M. Gell-Mann, P. Ramond, R. Slansky, in Complex Spinors and Unified Theories in Supergravity, ed. by F. van Nieuwenhuizen, D. Freedman (North Holland, Amsterdam, 1979), p. 315Google Scholar
  3. 64.
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe (KEK, Japan, 1979)Google Scholar
  4. 65.
    S.L. Glashow, NATO Adv. Study Inst. Ser. B Phys. 59, 687 (1979)Google Scholar
  5. 66.
    R.N. Mohapatra, G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D 23, 165 (1981)ADSCrossRefGoogle Scholar

Effective Lagrangian Mechanism

  1. 67.
    S. Weinberg, Baryon and lepton nonconserving processes. Phys. Rev. Lett. 43, 1566 (1979)ADSCrossRefGoogle Scholar

Discovery of Neutrino Oscillations

  1. 68.
    Y. Fukuda et al. [Super-Kamiokande Collaboration], Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998)Google Scholar
  2. 69.
    T. Kajita, Nobel lecture: discovery of atmospheric neutrino oscillations. Rev. Mod. Phys. 88(3), 030501 (2016)Google Scholar
  3. 70.
    Q.R. Ahmad et al. [SNO Collaboration], Measurement of the rate of ν e + d → p + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001)Google Scholar
  4. 71.
    Q.R. Ahmad et al. [SNO Collaboration], Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)Google Scholar
  5. 72.
    A.B. McDonald, Nobel lecture: the Sudbury Neutrino Observatory: observation of flavor change for solar neutrinos. Rev. Mod. Phys. 88(3), 030502 (2016)Google Scholar
  6. 73.
    T. Araki et al. (KamLAND), Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005). hep-ex/0406035Google Scholar
  7. 74.
    K. Eguchi et al. (KamLAND), First results from KamLAND: evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003). hep-ex/0212021Google Scholar

Solar Neutrino Experiments and First Indications in Favor of Neutrino Masses and Mixing

  1. 75.
    R. Davis Jr., D.S. Harmer, K.C. Hoffman, Search for neutrinos from the sun. Phys. Rev. Lett. 20, 1205 (1968)ADSCrossRefGoogle Scholar
  2. 76.
    K.S. Hirata et al. [Kamiokande-II Collaboration], Results from one thousand days of real time directional solar neutrino data. Phys. Rev. Lett. 65, 1297 (1990)Google Scholar
  3. 77.
    A.I. Abazov et al., Search for neutrinos from sun using the reaction Ga-71 (electron-neutrino e-) Ge-71, Phys. Rev. Lett. 67, 3332 (1991)ADSCrossRefGoogle Scholar
  4. 78.
    V.N. Gavrin et al., Latest results from the Soviet-American gallium experiment. AIP Conf. Proc. 272, 1101 (2008)ADSCrossRefGoogle Scholar
  5. 79.
    P. Anselmann et al. [GALLEX Collaboration], Solar neutrinos observed by GALLEX at Gran Sasso. Phys. Lett. B 285, 376 (1992)Google Scholar

Measurement of the Angle θ13

  1. 80.
    K. Abe et al. [T2K Collaboration], Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys. Rev. Lett. 107, 041801 (2011)Google Scholar
  2. 81.
    F.P. An et al. [Daya Bay Collaboration], Improved measurement of electron antineutrino disappearance at Daya bay. Chin. Phys. C 37, 011001 (2013)Google Scholar
  3. 82.
    J.K. Ahn et al. [RENO Collaboration], Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012)Google Scholar
  4. 83.
    Y. Abe et al. [Double Chooz Collaboration], Indication of reactor \(\bar {\nu }_e\) disappearance in the double chooz experiment. Phys. Rev. Lett. 108, 131801 (2012)Google Scholar

Atmospheric Neutrino Experiments

  1. 84.
    K. Abe et al. (Super-Kamiokande), Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV. arXiv:1710.09126 [hep-ex]Google Scholar
  2. 85.
    E. Richard et al. (Super-Kamiokande), Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation. Phys. Rev. D 94, 052001 (2016). arXiv:1510.08127Google Scholar
  3. 86.
    K. Abe et al. (Super-Kamiokande), A measurement of the appearance of atmospheric tau neutrinos by Super-Kamiokande. Phys. Rev. Lett. 110, 181802 (2013). arXiv:1206.0328Google Scholar
  4. 87.
    R. Wendell et al. (Super-Kamiokande), Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III. Phys. Rev. D 81, 092004 (2010). arXiv:1002.3471Google Scholar
  5. 88.
    I.Y. Ashie et al. (Super-Kamiokande), Evidence for an oscillatory signature in atmospheric neutrinooscillation. Phys. Rev. Lett. 93, 101801 (2004). arXiv:hep-ex/0404034Google Scholar
  6. 89.
    M.G. Aartsen et al. (IceCube), Measurement of atmospheric neutrino oscillations at 6-56 GeV with IceCube DeepCore. arXiv:1707.07081 [hep-ex]Google Scholar
  7. 90.
    M.G. Aartsen et al. (IceCube), Measurement of the ν μ energy spectrum with IceCube-79. arXiv:1705.07780Google Scholar
  8. 91.
    M.G. Aartsen et al. (IceCube), Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91, 072004 (2015). arXiv:1410.7227Google Scholar
  9. 92.
    M.G. Aartsen et al. (IceCube), Measurement of atmospheric neutrino oscillations with IceCube. Phys. Rev. Lett. 111, 081801 (2013). arXiv:1305.3909Google Scholar

Solar Neutrino Experiments

  1. 93.
    M. Agostini et al. (Borexino), Improved measurement of 8B solar neutrinos with 1.5 kt y of Borexino exposure. arXiv:1709.00756 [hep-ex]Google Scholar
  2. 94.
    M. Agostini et al. (Borexino), First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with borexino phase-II. arXiv:1707.09279 [hep-ex]Google Scholar
  3. 95.
    O.Y. Smirnov et al. (Borexino), Measurement of neutrino flux from the primary proton-proton fusion process in the sun with borexino detector. Phys. Part. Nucl. 47, 995 (2016). arXiv:1507.02432Google Scholar
  4. 96.
    G. Bellini et al. (Borexino), Neutrinos from the primary proton-proton fusion process in the sun. Nature 512, 383 (2014)Google Scholar
  5. 97.
    G. Bellini et al. (Borexino), Final results of borexino phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89, 112007 (2014). arXiv:1308.0443Google Scholar
  6. 98.
    G. Bellini et al. (Borexino), First evidence of pep solar neutrinos by direct detection in borexino. Phys. Rev. Lett. 108, 051302 (2012). arXiv:1110.3230Google Scholar
  7. 99.
    G. Bellini et al. (Borexino), Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 107, 141302 (2011). arXiv:1104.1816Google Scholar
  8. 100.
    B. Aharmim et al. (SNO), Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory. Phys. Rev. C 88, 025501 (2013). arXiv:1109.0763Google Scholar
  9. 101.
    B. Aharmim et al. (SNO), Measurement of the ν e and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set. Phys. Rev. C 87, 015502 (2013). arXiv:1107.2901Google Scholar
  10. 102.
    B. Aharmim et al. (SNO), Low energy threshold analysis of the phase I and phase II data sets of the Sudbury Neutrino Observatory. Phys. Rev. C 81, 055504 (2010). arXiv:0910.2984Google Scholar
  11. 103.
    B. Aharmim et al. (SNO), An independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 101, 111301 (2008). arXiv:0806.0989Google Scholar
  12. 104.
    A.B. McDonald, The Sudbury Neutrino Observatory: observation of flavor change for solar neutrinos. Ann. Phys. 528, 469 (2016)CrossRefGoogle Scholar
  13. 105.
    K. Abe et al. (Super-Kamiokande), Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 94, 052010 (2016). arXiv:1606.07538Google Scholar
  14. 106.
    A. Renshaw et al. (Super-Kamiokande), First indication of terrestrial matter effects on solar neutrino oscillation. Phys. Rev. Lett. 112, 091805 (2014). arXiv:1312.5176Google Scholar
  15. 107.
    K. Abe et al. (Super-Kamiokande), Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011). arXiv:1010.0118Google Scholar
  16. 108.
    J.P. Cravens et al. (Super-Kamiokande), Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008). arXiv:0803.4312Google Scholar
  17. 109.
    J. Hosaka et al. (Super-Kamkiokande), Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73, 112001 (2006). hep-ex/0508053Google Scholar
  18. 110.
    M. Altmann et al. (GNO), Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005). arXiv:hep-ex/0504037Google Scholar
  19. 111.
    W. Hampel et al. (GALLEX), GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999)Google Scholar
  20. 112.
    J.N. Abdurashitov et al. (SAGE), Measurement of the solar neutrino capture rate by the Russian-American gallium solar neutrino experiment during one half of the 22-year cycle of solar activity. J. Exp. Theor. Phys. 95, 181 (2002). arXiv:astro-ph/0204245Google Scholar
  21. 113.
    Y. Fukuda et al. (Kamiokande), Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683 (1996)Google Scholar
  22. 114.
    K. Lande et al. (Homestake), The homestake solar neutrino program. Nucl. Phys. Proc. Suppl. 77, 13 (1999)Google Scholar
  23. 115.
    B.T. Cleveland et al. (Homestake), Measurement of the solar electron neutrino flux with the homestake chlorine detector. Astrophys. J. 496, 505 (1998)Google Scholar

Accelerator Neutrino Experiments

  1. 116.
    P. Adamson et al. (MINOS), Combined analysis of ν μ disappearance and ν μ → ν e appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014). arXiv:1403.0867Google Scholar
  2. 117.
    P. Adamson et al. (MINOS), Electron neutrino and antineutrino appearance in the full MINOS data sample. Phys. Rev. Lett. 110, 171801 (2013). arXiv:1301.4581Google Scholar
  3. 118.
    P. Adamson et al. (MINOS), An improved measurement of muon antineutrino disappearance in MINOS. Phys. Rev. Lett. 108, 191801 (2012). arXiv:1202.2772Google Scholar
  4. 119.
    K. Abe et al. (T2K), Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν e interactions at the far detector. arXiv:1707.01048Google Scholar
  5. 120.
    K. Abe et al. (T2K), Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5e21 protons on target. Phys. Rev. D 96, 011102 (2017). arXiv:1704.06409Google Scholar
  6. 121.
    K. Abe et al. (T2K), Sensitivity of the T2K accelerator-based neutrino experiment with an extended run to 20 × 1021 POT. arXiv:1607.08004Google Scholar
  7. 122.
    K. Abe et al. (T2K), Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6E20 protons on target. Phys. Rev. D 91, 072010 (2015). arXiv:1502.01550Google Scholar
  8. 123.
    K. Abe et al. (T2K), Precise measurement of the neutrino mixing parameter θ 23 from muon neutrino disappearance in an off-axis beam. Phys. Rev. Lett. 112, 181801 (2014). arXiv:1403.1532Google Scholar
  9. 124.
    P. Adamson et al. (NOvA), Measurement of the neutrino mixing angle θ 23 in NOvA. Phys. Rev. Lett. 118, 151802 (2017). arXiv:1701.05891Google Scholar
  10. 125.
    P. Adamson et al. (NOvA), First measurement of muon-neutrino disappearance in NOvA. Phys. Rev. D 93, 051104 (2016). arXiv:1601.05037Google Scholar
  11. 126.
    P. Adamson et al. (NOvA), First measurement of electron neutrino appearance in NOvA. Phys. Rev. Lett. 116, 151806 (2016). arXiv:1601.05022Google Scholar
  12. 127.
    M.H. Ahn et al. (K2K), Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74, 072003 (2006). hep-ex/0606032Google Scholar

KamLAND Reactor Neutrino Experiment

  1. 128.
    A. Gando et al. (KamLAND), Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88, 033001 (2013). arXiv:1303.4667 [hep-ex]Google Scholar
  2. 129.
    S. Abe et al. (KamLAND), Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 100, 221803 (2008). arXiv:0801.4589 [hep-ex]Google Scholar

Reactor Neutrino Experiments

  1. 130.
    F.P. An et al. (Daya Bay), Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95, 072006 (2017). arXiv:1610.04802Google Scholar
  2. 131.
    F.P. An et al. (Daya Bay), New measurement of θ 13 via neutron capture on hydrogen at Daya Bay. Phys. Rev. D 93, 072011 (2016). arXiv:1603.03549Google Scholar
  3. 132.
    F.P. An et al. (Daya Bay), A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay. Phys. Rev. Lett. 115, 111802 (2015). arXiv:1505.03456Google Scholar
  4. 133.
    F.P. An et al. (Daya Bay), Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. Phys. Rev. Lett. 112, 061801 (2014). arXiv:1310.6732Google Scholar
  5. 134.
    S.H. Seo et al. (RENO), Spectral measurement of the electron antineutrino oscillation amplitude and frequency using 500 live days of RENO data. arXiv:1610.04326 [hep-ex]Google Scholar
  6. 135.
    J.H. Choi et al. (RENO), Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 116, 211801 (2016). arXiv:1511.05849Google Scholar
  7. 136.
    S.-B. Kim et al. (RENO), Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012). arXiv:1204.0626Google Scholar
  8. 137.
    Y. Abe et al. (Double Chooz), Measurement of θ 13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques. J. High Energy Phys. 01, 163 (2016). arXiv:1510.08937 [hep-ex]Google Scholar
  9. 138.
    Y. Abe et al. (Double Chooz), Improved measurements of the neutrino mixing angle θ 13 with the Double Chooz detector. J. High Energy Phys. 10, 086 (2014). arXiv:1406.7763 [hep-ex]; Erratum: JHEP 02, 074 (2015)Google Scholar
  10. 139.
    Y. Abe et al. (Double Chooz), Background-independent measurement of θ 13 in Double Chooz. Phys. Lett. B 735, 51 (2014). arXiv:1401.5981 [hep-ex]Google Scholar

Neutrinoless Double β-Decay

  1. 140.
    C. Alduino et al. (CUORE), First results from CUORE: a search for lepton number violation via 0νββ decay of 130Te. arXiv:1710.07988 [nucl-ex]Google Scholar
  2. 141.
    K. Alfonso et al. (CUORE), Search for neutrinoless double-beta decay of 130Te with CUORE-0. Phys. Rev. Lett. 115, 102502 (2015). arXiv:1504.02454Google Scholar
  3. 142.
    J.B. Albert et al., Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. arXiv:1707.08707 [hep-ex]Google Scholar
  4. 143.
    J.B. Albert et al. (EXO-200), Searches for double beta decay of 134 Xe with EXO-200. arXiv:1704.05042Google Scholar
  5. 144.
    J.B. Albert et al. (EXO-200), Search for majorana neutrinos with the first two years of EXO-200 data. Nature 510, 229 (2014). arXiv:1402.6956Google Scholar
  6. 145.
    M. Agostini et al. (GERDA), Background free search for neutrinoless double beta decay with GERDA Phase II. arXiv:1703.00570Google Scholar
  7. 146.
    M. Agostini et al. (GERDA), Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA phase I. Eur. Phys. J. C 76, 652 (2016). arXiv:1605.01756Google Scholar
  8. 147.
    A.M. Bakalyarov et al. (C03-06-23.1), Results of the experiment on investigation of germanium-76 double beta decay. Experimental data of Heidelberg-Moscow collaboration November 1995–August 2001. Phys. Part. Nucl. Lett. 2, 77 (2005). hep-ex/0309016Google Scholar
  9. 148.
    C.E. Aalseth et al. (IGEX), The IGEX Ge-76 neutrinoless double-beta decay experiment: prospects for next generation experiments. Phys. Rev. D 65, 092007 (2002), hep-ex/0202026Google Scholar
  10. 149.
    A. Gando et al. (KamLAND-Zen), Search for majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016). arXiv:1605.02889Google Scholar
  11. 150.
    A. Gando et al. (KamLAND-Zen), Limit on neutrinoless betabeta decay of Xe-136 from the first phase of KamLAND-Zen and comparison with the positive claim in Ge-76. Phys. Rev. Lett. 110, 062502 (2013). arXiv:1211.3863Google Scholar
  12. 151.
    R. Arnold et al., Search for neutrinoless quadruple-β decay of 150Nd with the NEMO-3 detector. Phys. Rev. Lett. 119, 041801 (2017). arXiv:1705.08847Google Scholar
  13. 152.
    R. Arnold et al. (NEMO-3), Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. arXiv:1610.03226Google Scholar

Neutrino Mass Measurement

  1. 153.
    Ch. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium β decay. Eur. Phys. J. C 40, 447 (2005). hep-ex/0412056Google Scholar
  2. 154.
    V.N. Aseev et al. (Troitsk), An upper limit on electron antineutrino mass from Troitsk experiment. Phys. Rev. D 84, 112003 (2011). arXiv:1108.5034 [hep-ex]Google Scholar
  3. 155.
    V.N. Aseev et al. (Troitsk), An upper limit on electron antineutrino mass from Troitsk experiment. Phys. Rev. D 84, 112003 (2011). arXiv:1108.5034 [hep-ex]Google Scholar
  4. 156.
    A. Osipowicz et al. (KATRIN), KATRIN: a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. hep-ex/0109033Google Scholar
  5. 157.
    J. Angrik et al. (KATRIN), KATRIN design report 2004 (2005)Google Scholar
  6. 158.
    F. Fraenkle, Status of the neutrino mass experiments KATRIN and Project 8. PoS EPS-HEP2015, 084 (2015)Google Scholar
  7. 159.
    R.G. Hamish Robertson (KATRIN), KATRIN: an experiment to determine the neutrino mass from the beta decay of tritium, 2013 Snowmass. arXiv:1307.5486 [physics]Google Scholar

Global Analysis of Neutrino Data

  1. 160.
    M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Global analyses of neutrino oscillation experiments. Nucl. Phys. B 908, 199 (2016). arXiv:1512.06856Google Scholar
  2. 161.
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Status and prospects of global analyses of neutrino mass-mixing parameters. J. Phys. Conf. Ser. 888(1), 012037 (2017)Google Scholar
  3. 162.
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Neutrino masses and mixings: status of known and unknown 3ν parameters. Nucl. Phys. B 908, 218 (2016). arXiv:1601.07777 [hep-ph]
  4. 163.
    F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, Global constraints on absolute neutrino masses and their ordering. Phys. Rev. D 95(9), 096014 (2017). arXiv:1703.04471 [hep-ph]
  5. 164.
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Status of neutrino oscillations (2017). arXiv:1708.01186 [hep-ph]Google Scholar

Future Experiments

  1. 165.
    B. Abi et al. (DUNE), The single-phase ProtoDUNE technical design report. arXiv:1706.07081 [physics]Google Scholar
  2. 166.
    J. Strait et al. (DUNE), Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015. arXiv:1601.05823 [physics]Google Scholar
  3. 167.
    R. Acciarri et al. (DUNE), Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF. arXiv:1512.06148 [physics]Google Scholar
  4. 168.
    F. An et al. (JUNO), Neutrino physics with JUNO. J. Phys. G 43, 030401 (2016). arXiv:1507.05613 [physics]Google Scholar
  5. 169.
    J. Migenda [Hyper-Kamiokande Proto- Collaboration], Astroparticle physics in Hyper-Kamiokande. arXiv:1710.08345 [physics.ins-det]Google Scholar
  6. 170.
    M. Yokoyama [Hyper-Kamiokande Proto Collaboration], The Hyper-Kamiokande experiment. arXiv:1705.00306 [hep-ex]Google Scholar

Neutrino Oscillations

  1. 171.
    P. Huber, Prospects for neutrino oscillation parameters. PoS NOW2016, 025 (2017). arXiv:1612.04843Google Scholar
  2. 172.
    P. Hernandez, Neutrino Physics. arXiv:1708.01046 [hep-ph]; 8th CERN-Latin-American School of High-Energy Physics (CLASHEP2015): Ibarra, Ecuador, March 05-17, 2015Google Scholar
  3. 173.
    S. Bilenky, Neutrino oscillations: from an historical perspective to the present status. Nucl. Phys. B 908, 2 (2016). arXiv:1602.00170Google Scholar
  4. 174.
    Y. Wang, Z.-Z. Xing, Neutrino masses and flavor oscillations. Adv. Ser. Direct. High Energy Phys. 26, 371 (2016). arXiv:1504.06155Google Scholar
  5. 175.
    P. Vogel, L.J. Wen, C. Zhang, Neutrino oscillation studies with reactors. Nat. Commun. 6, 6935 (2015). arXiv:1503.01059Google Scholar
  6. 176.
    S.J. Parke, Neutrinos: theory and phenomenology. Phys. Scr. T 158, 014013 (2013). arXiv:1310.5992; Nobel Symposium on LHC results, May 13–19, 2013 (Krusenberg, Uppsala)Google Scholar
  7. 177.
    A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), Neutrinos. arXiv:1310.4340Google Scholar
  8. 178.
    M.C. Gonzalez-Garcia, M. Maltoni, Phenomenology with massive neutrinos. Phys. Rep. 460, 1 (2008). arXiv:0704.1800Google Scholar
  9. 179.
    A. Strumia, F. Vissani, Neutrino masses and mixings and…, hep-ph/0606054Google Scholar
  10. 180.
    R.D. McKeown, P. Vogel, Neutrino masses and oscillations: triumphs and challenges. Phys. Rep. 394, 315 (2004). arXiv:hep-ph/0402025Google Scholar
  11. 181.
    W.M. Alberico, S.M. Bilenky, Neutrino oscillations, masses and mixing. Phys. Part. Nucl. 35, 297 (2004). arXiv:hep-ph/0306239Google Scholar
  12. 182.
    M.C. Gonzalez-Garcia, Y. Nir, Neutrino masses and mixing: evidence and implications. Rev. Mod. Phys.75, 345 (2003). arXiv:hep-ph/0202058Google Scholar
  13. 183.
    C. Giunti, M. Laveder, Neutrino mixing, in Developments in Quantum Physics—2004, ed. by F. Columbus, V. Krasnoholovets (Nova Science Publishers, Hauppauge, 2003), pp. 197–254. arXiv:hep-ph/0310238Google Scholar
  14. 184.
    V. Barger, D. Marfatia, K. Whisnant, Progress in the physics of massive neutrinos. Int. J. Mod. Phys. E 12, 569 (2003). arXiv:hep-ph/0308123Google Scholar
  15. 185.
    S.M. Bilenky, C. Giunti, W. Grimus, Phenomenology of neutrino oscillations. Prog. Part. Nucl. Phys. 43, 1 (1999). arXiv:hep-ph/9812360Google Scholar
  16. 186.
    P. Fisher, B. Kayser, K.S. McFarland, Neutrino mass and oscillation. Ann. Rev. Nucl. Part. Sci. 49, 481 (1999). arXiv:hep-ph/9906244Google Scholar
  17. 187.
    S.M. Bilenky, S.T. Petcov, Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 59, 671 (1987)ADSCrossRefGoogle Scholar
  18. 188.
    S.M. Bilenky, B. Pontecorvo, Lepton mixing and neutrino oscillations. Phys. Rep. 41, 22 (1978)CrossRefGoogle Scholar

Neutrinoless Double β-Decay

  1. 189.
    J.D. Vergados, H. Ejiri, F. Simkovic, Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 25, 1630007 (2016). arXiv:1612.02924Google Scholar
  2. 190.
    S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2162659 (2016). arXiv:1601.07512Google Scholar
  3. 191.
    J.J. Gomez-Cadenas, J. Martin-Albo, Phenomenology of neutrinoless double beta decay. PoS GSSI14, 004 (2015). arXiv:1502.00581; Gran Sasso Summer Institute 2014 Hands-On Experimental Underground Physics at LNGS (GSSI14), September 2014Google Scholar
  4. 192.
    H. Pas, W. Rodejohann, Neutrinoless double beta decay. New J. Phys. 17, 115010 (2015). arXiv:1507.00170Google Scholar
  5. 193.
    S.M. Bilenky, C. Giunti, Neutrinoless double-beta decay: a probe of physics beyond the standard model. Int. J. Mod. Phys. A 30, 0001 (2015). arXiv:1411.4791Google Scholar
  6. 194.
    F.T. Avignone III, S.R. Elliott, J. Engel, Double beta decay, majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481 (2008). arXiv:0708.1033Google Scholar
  7. 195.
    M. Doi, T. Kotani, E. Takasugi, Double beta decay and majorana neutrino. Prog. Theor. Phys. Suppl. 83, 1 (1985)ADSCrossRefGoogle Scholar

Solar Neutrinos

  1. 196.
    M. Maltoni, A.Yu. Smirnov, Solar neutrinos and neutrino physics. Eur. Phys. J. A 52, 87 (2016). arXiv:1507.05287Google Scholar
  2. 197.
    F. Vissani, Solar neutrino physics on the beginning of 2017. arXiv:1706.05435Google Scholar
  3. 198.
    V. Antonelli, L. Miramonti, C. Pena-Garay, A. Serenelli, Solar neutrinos. Adv. High Energy Phys. 2013, 351926 (2013). arXiv:1208.1356Google Scholar
  4. 199.
    M. Blennow, A. Yu. Smirnov, Neutrino propagation in matter. Adv. High Energy Phys. 2013, 972485 (2013). arXiv:1306.2903Google Scholar
  5. 200.
    T.K. Kuo, J. Pantaleone, Neutrino oscillations in matter. Rev. Mod. Phys. 61, 937 (1989)ADSCrossRefGoogle Scholar

Neutrino in Cosmology

  1. 201.
    A.B. Balantekin, G.M. Fuller, Neutrinos in cosmology and astrophysics. Prog. Part. Nucl. Phys. 71, 162 (2013). arXiv:1303.3874Google Scholar
  2. 202.
    G. Hinshaw et al., Five year Wilkinson Microwave Anisotropy Probe (WMAP) observations: data processing, sky maps, basic results. Astrophys. J. Suppl. 180, 225 (2009). arXiv:0803.0732Google Scholar
  3. 203.
    W.C. Haxton, Neutrino Astrophysics (2008). arXiv:0808.0735Google Scholar
  4. 204.
    J. Lesgourgues, S. Pastor, Massive neutrinos and cosmology. Phys. Rep. 429, 307 (2006). arXiv:astro-ph/0603494Google Scholar


  1. 205.
    C.S. Fong, E. Nardi, A. Riotto, Leptogenesis in the universe. Adv. High Energy Phys. 2012, 158303 (2012). arXiv:1301.3062 [hep-ph]Google Scholar
  2. 206.
    W. Buchmuller, Leptogenesis: theory and neutrino masses. Nucl. Phys. Proc. Suppl. 235–236, 329 (2013). arXiv:1210.7758 [hep-ph]; XXV International Conference on Neutrino Physics, KyotoGoogle Scholar
  3. 207.
    P. Di Bari, Developments in leptogenesis. Nucl. Phys. B, Proc. Suppl. 229–232, 305 (2012). arXiv:1102.3409 [hep-ph]; Neutrino 2010Google Scholar
  4. 208.
    P. Di Bari, An introduction to leptogenesis and neutrino properties. Contemp. Phys. 53, 315 (2012). arXiv:1206.3168 [hep-ph]Google Scholar
  5. 209.
    S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rep. 466, 105 (2008). arXiv:0802.2962 [hep-ph]ADSCrossRefGoogle Scholar
  6. 210.
    W. Buchmuller, P. Di Bari, M. Plumacher, Some aspects of thermal leptogenesis. New J. Phys. 6, 105 (2004). hep-ph/0406014Google Scholar

Models of Neutrino Masses and Mixing

  1. 211.
    G. Altarelli, Status of neutrino mass and mixing. Int. J. Mod. Phys. A 29, 1444002 (2014). arXiv:1404.3859; International Conference on Flavor Physics and Mass Generation, Singapore, February 2014Google Scholar
  2. 212.
    S.F. King, A. Merle, S. Morisi, Y. Shimizu, M. Tanimoto, Neutrino mass and mixing: from theory to experiment. New J. Phys. 16, 045018 (2014). arXiv:1402.4271Google Scholar

Neutrino Physics

  1. 213.
    V. Barger, D. Marfatia, K. Whisnant, The Physics of Neutrinos (Princeton University Press, Princeton, 2012). ISBN 978-0691128535Google Scholar
  2. 214.
    Z.-Z. Xing, S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology (Zhejiang University Press, Hangzhou, 2011). ISBN 978-7308080248CrossRefzbMATHGoogle Scholar
  3. 215.
    S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos. Lecture Notes in Physics, vol. 817 (Springer, Berlin, 2010). ISBN 978-3-642-14042-6Google Scholar
  4. 216.
    F. Close, Neutrino (Oxford University Press, Oxford, 2010)Google Scholar
  5. 217.
    C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, Oxford, 2007). ISBN 978-0-19-850871-7CrossRefGoogle Scholar
  6. 218.
    R.N. Mohapatra, P.B. Pal, Massive Neutrinos in Physics and Astrophysics, 3rd edn. Lecture Notes in Physics, vol. 72 (World Scientific, Singapore, 2004)Google Scholar
  7. 219.
    M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003)Google Scholar
  8. 220.
    K. Zuber, Neutrino Physics. Series in High Energy Physics (Institute of Physics Publishing, Bristol, 2003)Google Scholar
  9. 221.
    C.W. Kim, A. Pevsner, Neutrinos in Physics and Astrophysics. Contemporary Concepts in Physics, vol. 8 (Harwood Academic Press, Reading, 1993)Google Scholar
  10. 222.
    F. Boehm, P. Vogel, Physics of Massive Neutrinos (Cambridge University Press, Cambridge, 1992)CrossRefGoogle Scholar
  11. 223.
    K. Winter (ed.), Neutrino Physics (Cambridge University Press, Cambridge, 1991)Google Scholar
  12. 224.
    B. Kayser, F. Gibrat-Debu, F. Perrier, The Physics of Massive Neutrinos. Lecture Notes in Physics, vol. 25 (World Scientific, Singapore, 1989)Google Scholar
  13. 225.
    J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989)Google Scholar

Weak Interaction. The Standard Model

  1. 226.
    C. Burgess, G. Moore, The Standard Model: A Primer (Cambridge University Press, Cambridge, 2007)zbMATHGoogle Scholar
  2. 227.
    D.A. Bromley, Gauge Theory of Weak Interactions (Springer, Berlin, 2000)Google Scholar
  3. 228.
    S.M. Bilenky, Introduction to Feynman Diagrams and Electroweak Interactions Physics (Editions Frontières, Gif-sur-Yvette, 1994)Google Scholar
  4. 229.
    P. Renton, Electroweak Interactions: An Introduction to the Physics of Quarks and Leptons (Cambridge University Press, Cambridge, 1990)CrossRefGoogle Scholar
  5. 230.
    F. Halzen, M.D. Alan, Quarks and Leptons: An Introductory Course in Modern Particle Physics (Wiley, Hoboken, 1984)Google Scholar
  6. 231.
    E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)Google Scholar
  7. 232.
    S.M. Bilenky, Introduction to the Physics of Electroweak Interactions (Pergamon Press, Oxford, 1982)Google Scholar
  8. 233.
    L.B. Okun, Leptons and Quarks (Elsevier, Amsterdam, 1982)Google Scholar
  9. 234.
    R.E. Marshak, Riazuddin, C.P. Ryan, Theory of Weak Interactions in Particle Physics (Wiley, Hoboken, 1969)Google Scholar


  1. 235.
    J. Lesgourgues, G. Mangano, G. Miele, S. Pastor, Neutrino Cosmology (Cambridge University Press, Cambridge, 2013). ISBN 9781139012874CrossRefGoogle Scholar
  2. 236.
    S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)zbMATHGoogle Scholar
  3. 237.
    L. Bergstrom, A. Goobar, Cosmology and Particle Astrophysics (Springer, Berlin, 2004)zbMATHGoogle Scholar
  4. 238.
    D.H. Perkins, Particle Astrophysics (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  5. 239.
    E.V. Lindner, First Principles of Cosmology (Addison-Wesley, Boston, 1997)Google Scholar
  6. 240.
    E.W. Kolb, M.S. Terner, The Early Universe. Frontiers in Physics (Addison-Wesley, Boston, 1990)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Samoil Bilenky
    • 1
  1. 1.TRIUMFVancouverCanada

Personalised recommendations