Skip to main content

Old Problems Revisited from New Perspectives in Implicit Theories of Fluids

  • Chapter
  • First Online:
Non-Newtonian Fluid Mechanics and Complex Flows

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2212))

  • 1508 Accesses

Abstract

Three of the most studied problems in fluid dynamics are revisited within implicit theories of fluids. Specifically, the onset of convection, the determination of laminar flows and the motion of a fluid down an inclined plane are studied under the assumption that the Cauchy stress tensor and the rate-of-strain tensor are related through implicit constitutive equations. Particular attention is paid to fluids whose viscosities are pressure-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of self-consistency, if Σ is a smooth scalar, vector or tensor field defined on the trajectory of the body \(\mathcal {B}\), \(\dot {\varSigma }=\varSigma _t+(\boldsymbol {v}\cdot \nabla )\varSigma \).

  2. 2.

    The other physical properties measured by Bridgman are the isothermal compressibility, the thermal expansion coefficient, the specific heat and the thermal conductivity.

  3. 3.

    Assuming that Ω is a horizontal layer is convenient for deriving the set of approximations we shall adopt in this paper. However, the analysis we are going to perform can be adapted, by means of slight changes, to the case in which Ω is bounded in one direction provided that such a direction is non-horizontal.

References

  1. Ancey, C.: Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)

    Article  Google Scholar 

  2. Andrade, E.N., Da, C.: The viscosity of liquids. Nature 125, 309–310 (1930)

    Article  Google Scholar 

  3. Bair S., Khonsari M., Winer W.O.: High pressure rheology of lubricants and limitations of the Reynolds equation. Tribol. Int. 31, 573–586 (1998)

    Article  Google Scholar 

  4. Bair S., Kottke P.: Pressure-viscosity relationship for elastohydrodynamics. Tribol. Trans. 46, 289–295 (2003)

    Article  Google Scholar 

  5. Ball, J.M., James, R.D.: The scientific life and influence of Clifford Ambrose Truesdell III. Arch. Ration. Mech. Anal. 161, 1–26 (2002)

    Article  MathSciNet  Google Scholar 

  6. Barus C.: Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)

    Article  Google Scholar 

  7. Bénard H.: Les tourbillons cellulaires dans une nappe liquide, Revue Gén. Sci. pures et Appl. 11, 1261–1271 and 1309–1328 (1900)

    Google Scholar 

  8. Bodenschatz, E., Pesch, W., Ahlers G.: Recent developements in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 708–778 (2000)

    Article  Google Scholar 

  9. Boussinesq, J.: Théorie Analytique de la Chaleur. Gauthier-Villars, Paris (1903)

    Google Scholar 

  10. Bridgman, P.W.: The effect of pressure on the viscosity of forty-three pure liquids. Proc. Am. Acad. Arts Sci. 61, 57–99 (1926)

    Article  Google Scholar 

  11. Bridgman, P.W.: The physics of high pressure. G. Bell and Sons, London (1931)

    Google Scholar 

  12. Busse, F.: Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 1929–1967 (1978)

    Article  Google Scholar 

  13. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  14. Cross, M.C., Hahenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  15. Fermi, E.: Thermodynamics. Dover Publications, New York (1956).

    MATH  Google Scholar 

  16. Gouin, H., Muracchini, A., Ruggeri, T.: On the Müller paradox for thermal-incompressible media. Contin. Mech. Thermodyn. 24, 505–513 (2012)

    Article  MathSciNet  Google Scholar 

  17. Govindarajan, R., Chandra Sahu, K.: Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331–353 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. 13, 49–52 (1902)

    Google Scholar 

  19. Hron, J., Malek, J., Rajagopal, K.R.: Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. Lond. Ser. A 257, 1603–1622 (2001)

    Article  Google Scholar 

  20. Huilgol, R.R.: On the definition of pressure in rheology. Rheol. Bull. 78(2), 12, 14–15 and 29 (2009)

    Google Scholar 

  21. Huppert, H.E.: Flow and instability of a viscous current down a slope. Nature 300, 427–429 (1982)

    Article  Google Scholar 

  22. Jones, S.J., Chew H.A.M.: Creep of Ice as a Function of Hydrostatic pressure. J. Phys. Chem. 87, 4064–4066 (1983)

    Article  Google Scholar 

  23. Koschmieder, E.L.: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Man, C.S., Sun, Q.X.: On the significance of normal stresses effects in the flow of glaciers. J. Glaciol. 33, 268–273 (1987)

    Article  Google Scholar 

  25. Manneville, P.: Rayleigh-Bénard convection: thirty years of experimental, theoretical and modelling work. In: Mutabazi, I., Wesfried, J.E., Gunyon (eds.) Dynamics of Spatio-Temporal Cellular Structures. Springer Tracts in Modern Physics, vol. 207. Springer, Berlin (2006)

    Chapter  Google Scholar 

  26. Martín-Alfonso, M.J., Martínez-Boza, F.J., Navarro, F.J., Fernández, M., Gallegos, C.: Pressure-temperature-viscosity relationship for heavy petroleum fractions. Fuel 86, 227–233 (2007)

    Article  Google Scholar 

  27. McTigue, D.F., Passman, S.L., Jones, S.J.: Normal stress effect in the creep of ice. J. Glaciol. 31, 120–126 (1985)

    Article  Google Scholar 

  28. Melamed, Y., Lin, M.: Principle of Sufficient Reason. The Stanford Encyclopedia of Philosophy (Spring 2017 edn.) Zalta, E.N. (ed.) https://plato.stanford.edu/archives/spr2017/entries/sufficient-reason

  29. Müller, I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  30. Newell, A.C., Passot, T., Lega, J.: Order parameter equations for patterns. Annu. Rev. Fluid Mech. 25, 399–453 (1993)

    Article  MathSciNet  Google Scholar 

  31. Oberbeck, A.: Über die Wärmleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271–292 (1879)

    Article  Google Scholar 

  32. Oberbeck, A.: Über die Bewegungsercheinungen der Atmosphäre. Sitz. Ber. K. Preuss. Akad. Miss. 383–395 and 1120–1138 (1888)

    Google Scholar 

  33. Paterson, W.S.B.: The Physics of Glaciers, 3rd edn. Pergamon, Trowbridge (1994)

    Google Scholar 

  34. Perazzo, C.A., Gratton, J.: Thin film of non-Newtonian fluid on an incline. Phys. Rev. E 67, 016307 (2003)

    Article  Google Scholar 

  35. Rajagopal, K.R.: On implicit constitutive theories. J. Fluid Mech. 550, 243–249 (2006)

    Article  MathSciNet  Google Scholar 

  36. Rajagopal, K.R.: Remarks on the notion of pressure. Int. J. Non Linear Mech. 71, 165–172 (2015)

    Article  Google Scholar 

  37. Rajagopal, K.R., Saccomandi, G.: A Novel approach to the description of constitutive relations. Front. Mater. 3, id.36 (2016)

    Google Scholar 

  38. Rajagopal, K.R., Saccomandi, G., Vergori, L.: Stability analysis of the Rayleigh-Bénard convection for a fluid with temperature and pressure dependent viscosity. Z. Angew. Math. Phys. 60, 739–755 (2009)

    Article  MathSciNet  Google Scholar 

  39. Rajagopal, K.R., Saccomandi, G., Vergori, L.: On the Oberbeck-Boussinesq approximation in fluids with pressure-dependent viscosities. Nonlinear Anal. Real World Appl. 10, 1139–1150 (2009)

    Article  MathSciNet  Google Scholar 

  40. Rajagopal, K.R., Saccomandi, G., Vergori, L.: Couette flow with frictional heating in a fluid with temperature and pressure dependent viscosity. Int. J. Heat Mass Transf. 54, 783–789 (2011)

    Article  Google Scholar 

  41. Rajagopal, K.R., Saccomandi, G., Vergori, L.: Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane. J. Fluid Mech. 706, 173–189 (2012)

    Article  MathSciNet  Google Scholar 

  42. Rajagopal, K.R., Saccomandi, G., Vergori, L.: On the approximation of isochoric motions of fluids under different flow conditions. Proc. R. Soc. Lond. Ser. A 471(2180), 20150159 (2015)

    Article  MathSciNet  Google Scholar 

  43. Rayleigh, L.: On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)

    Article  Google Scholar 

  44. Renardy, M.: Parallel shear flows of fluids with a pressure-dependent viscosity. J. Non-Newtonian Fluid Mech. 114, 229–236 (2003)

    Article  Google Scholar 

  45. Rionero, S.: Metodi variazionali per la stabilitàasintotica in media in magnetoidrodinamica. Ann. Mate. Pura Appl. 78, 339–364 (1968)

    Article  Google Scholar 

  46. Saal, R.N.J., Koens G.: Investigations into plastic properties of asphaltic bitumen. Physics 7, 408–412 (1933)

    Article  Google Scholar 

  47. Schoof, C., R.C.A. Hindmarsh, R.C.A.: Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math. 63, 73–114 (2010)

    Article  MathSciNet  Google Scholar 

  48. Spencer, A.J.M.: Theory of invariants. Continuum Physics Eringen, A.C. vol. 1, pt. 3. Academic, New York and London (1971)

    Chapter  Google Scholar 

  49. Stokes, G.G.: On the theories of the internal friction of fluids in motion, and motion of elastic solids. Trans. Camb. Philos. Soc. 8, 287–305 (1845)

    Google Scholar 

  50. Straughan, B.: The Energy Method, Stability and Nonlinear Convection. Series in Applied Mathematical Science, vol. 91. Springer, New York (1992)

    Book  Google Scholar 

  51. Szeri, A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  52. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)

    Book  Google Scholar 

  53. Vergori, L.: Flows at small Reynolds and Froude numbers. Int. J. Eng. Sci. 48, 1659–1670 (2010)

    Article  MathSciNet  Google Scholar 

  54. Zonta, F., Soldati, A.: Effect of temperature dependent fluid properties on heat transfer in turbulent mixed convection. J. Heat Transfer-Trans. ASME 136, 022501 (2014)

    Article  Google Scholar 

  55. Zonta, F., Marchioli, C., Soldati, A.: Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150–174 (2012)

    Article  Google Scholar 

  56. Zonta, F., Onorato, M., Soldati, A.: Turbulence and internal waves in stably-stratified channel flow with temperature-dependent fluid properties. J. Fluid Mech. 697, 175–203 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Saccomandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saccomandi, G., Vergori, L. (2018). Old Problems Revisited from New Perspectives in Implicit Theories of Fluids. In: Farina, A., Mikelić, A., Rosso, F. (eds) Non-Newtonian Fluid Mechanics and Complex Flows. Lecture Notes in Mathematics(), vol 2212. Springer, Cham. https://doi.org/10.1007/978-3-319-74796-5_2

Download citation

Publish with us

Policies and ethics