Skip to main content

Bayesian History Matching for Forward Model-Driven Structural Health Monitoring

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

Computer models are widely utilised in many structural dynamics applications, however their use depends on calibration to observational data. A complexity in calibrating a computer model is that even when the ‘true’ input parameters to the model are known, there may be model discrepancy caused by the simplification or absence of certain physics. As a consequence the calibration technique employed must incorporate a mechanism for dealing with model discrepancy. Bayesian history matching is a process of using observed data in order to identify and discard areas of the computer model’s parameter space that will result in outputs that are unlikely given the observational data. This is performed using an implausibility metric that encompasses uncertainties associated with observational measurements and model discrepancy. The method employs this metric to identify a non-implausible space (i.e., parameter combinations that are likely to have produced the observed outputs). A maximum a posterior (MAP) approach can be used to obtain the calibrated computer model outputs from the non-implausible space. Model discrepancy between the calibrated computer model and observational data can then be inferred using a Gaussian process (GP) regression model. This paper applies Bayesian history matching in order to calibrate a computer model for forward model-driven structural health monitoring (SHM). Quantitative metrics are used to compare experimental and predictive damage features from the combined Bayesian history matching and GP approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner, P., Barthorpe, R.J., Lord, C.: The development of a damage model for the use in machine learning driven SHM and comparison with conventional SHM methods. In: Proceedings of ISMA2016 International Conference on Noise and Vibration Engineering, pp. 3333–3346 (2016)

    Google Scholar 

  2. Rytter, A.: Vibrational based inspection of civil engineering structures. Ph.D. dissertation (1993)

    Google Scholar 

  3. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)

    MATH  Google Scholar 

  4. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

    Google Scholar 

  5. Brynjarsdóttir, J., O’Hagan, A.: Learning about physical parameters: the importance of model discrepancy. Inverse Prob. 30(11), 114007 (2014)

    Article  MathSciNet  Google Scholar 

  6. Craig, P.S., Goldstein, M., Seheult, A.H., Smith, J.A.: Pressure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer experiments. In: Case Studies in Bayesian Statistics. Lecture Notes in Statistics, pp. 37–93. Springer, New York (1997)

    Google Scholar 

  7. Vernon, I., Goldstein, M., Bower, R.G.: Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5(4), 619–669 (2010)

    Article  MathSciNet  Google Scholar 

  8. Vernon, I., Goldstein, M., Bower, R.: Galaxy formation: Bayesian history matching for the observable universe. Stat. Sci. 29(1), 81–90 (2014)

    Article  MathSciNet  Google Scholar 

  9. Andrianakis, I., Vernon, I.R., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.N., Goldstein, M., White, R.G.: Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda. PLoS Comput. Biol. 11(1), e1003968 (2015)

    Article  Google Scholar 

  10. Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.N., Goldstein, M., White, R.G.: History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation. J. R. Stat. Soc. Ser. C (Appl. Stat.) 66(4), 717–740 (2017)

    Google Scholar 

  11. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

    Article  Google Scholar 

  12. Friswell, M.I.: Damage identification using inverse methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 393–410 (2007)

    Article  Google Scholar 

  13. O’Hagan, A.: Bayesian analysis of computer code outputs: a tutorial. Reliab. Eng. Syst. Saf. 91(10–11), 1290–1300 (2006)

    Article  Google Scholar 

  14. O’Hagan, A., Kingman, J.: Curve fitting and optimal design for prediction. J. R. Stat. Soc. Ser. B (Methodol.) 40(1), 1–42 (1978)

    Google Scholar 

  15. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. Int. J. Neural Syst. 14(2), 69–106 (2004)

    Article  Google Scholar 

  16. Bastos, L.S., O’Hagan, A.: Diagnostics for Gaussian process emulators. Technometrics 51(4), 425–438 (2009)

    Article  MathSciNet  Google Scholar 

  17. Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)

    MathSciNet  Google Scholar 

  18. Dette, H., Pepelyshev, A.: Generalized Latin hypercube design for computer experiments. Technometrics 52(4), 421–429 (2010)

    Article  MathSciNet  Google Scholar 

  19. Andrianakis, I., Challenor, P.G.: The effect of the nugget on Gaussian process emulators of computer models. Comput. Stat. Data Anal. 56(12), 4215–4228 (2012)

    Article  MathSciNet  Google Scholar 

  20. Gardner, P., Barthorpe, R.J., Lord, C.: Bayesian calibration and bias correction for forward model-driven SHM. In: Proceedings of IWSHM2017 International Workshop of Structural Health Monitoring, pp. 2019–2027 (2017)

    Google Scholar 

  21. Titsias, M.: Variational learning of inducing variables in Sparse Gaussian processes. Aistats 5, 567–574 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gardner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardner, P., Lord, C., Barthorpe, R.J. (2019). Bayesian History Matching for Forward Model-Driven Structural Health Monitoring. In: Barthorpe, R. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74793-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74793-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74792-7

  • Online ISBN: 978-3-319-74793-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics