Skip to main content

Anesthesia for Robot Assisted Gynecological Procedures

  • 2556 Accesses

Abstract

The use of robot-assisted techniques in the performance of surgery has been one of the most important developments in surgery in recent decades. The US FDA approved the robot-assisted surgical system for gynecological conditions in 2005, and currently gynecological together with urological are the most common surgical procedures performed with the Da Vinci® robot. In essence the robot system allows a surgeon to operate from a location remote to the patient, which allows improved accuracy, precision and a more comfortable operating position for the surgeon. However, robot-assisted surgery presents new challenges for anesthesiologists including patient positioning, as well as adverse effects on pulmonary, cardiovascular and neurological systems.

The current chapter highlights the most important anesthesia related issues during robot-assisted surgery during the preoperative, intraoperative and post-operative phases. Recommendations are given for patient positioning, intraoperative management and post- operative care. Potential intraoperative emergencies are discussed and a protocol for a standardized ‘undocking’ procedure is described.

Keywords

  • Robot-assisted
  • Gynecological anesthesia
  • Da Vinci®
  • Trendelenburg
  • Emergency undocking
  • Pneumoperitoneum
  • Nerve injury
  • Intra-ocular pressure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74766-8_79
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-74766-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  1. Ng AT, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J. 2014;20:241–50.

    PubMed  Google Scholar 

  2. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP(R) and ZEUS(R) to da Vinci(R). J Visc Surg. 2011;148:e3–8.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Territo A, Mottrie A, Abaza R, et al. Robotic kidney transplantation: current status and future perspectives. Minerva Urol Nefrol. 2016;69(1):5–13.

    PubMed  Google Scholar 

  4. Chauvet D, Hans S, Missistrano A, Rebours C, Bakkouri WE, Lot G. Transoral robotic surgery for sellar tumors: first clinical study. J Neurosurg. 2016;127(4):941–8.

    CrossRef  PubMed  Google Scholar 

  5. Zhao Y, Jiao W, Ren X, et al. Left lower lobe sleeve lobectomy for lung cancer using the Da Vinci surgical system. J Cardiothorac Surg. 2016;11:59.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Bellia A, Vitale SG, Lagana AS, et al. Feasibility and surgical outcomes of conventional and robot-assisted laparoscopy for early-stage ovarian cancer: a retrospective, multicenter analysis. Arch Gynecol Obstet. 2016;294:615–22.

    CrossRef  Google Scholar 

  7. Krill LS, Bristow RE. Robotic surgery: gynecologic oncology. Cancer J. 2013;19:167–76.

    CrossRef  PubMed  Google Scholar 

  8. Lenihan JP Jr. Navigating credentialing, privileging, and learning curves in robotics with an evidence and experienced-based approach. Clin Obstet Gynecol. 2011;54:382–90.

    CrossRef  PubMed  Google Scholar 

  9. Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12:1091.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Medical Robotic Systems Market (Surgical Robots, Non-Invasive Radiosurgery Robotic Systems, Prosthetics and Exoskeletons, Assistive and Rehabilitation Robots, Non-Medical Robotics in Hospitals and Emergency Response Robotic Systems) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012–2018. 2013. http://www.transparencymarketresearch.com/medical-robotic-systems.html. Accessed May 2017.

  11. Steenwyk B, Lyerly R 3rd. Advancements in robotic-assisted thoracic surgery. Anesthesiol Clin. 2012;30:699–708.

    CrossRef  PubMed  Google Scholar 

  12. Hu JC, Gu X, Lipsitz SR, et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302:1557–64.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Lim PC, Kang E, Park DH. Learning curve and surgical outcome for robotic-assisted hysterectomy with lymphadenectomy: case-matched controlled comparison with laparoscopy and laparotomy for treatment of endometrial cancer. J Minim Invasive Gynecol. 2010;17:739–48.

    CrossRef  PubMed  Google Scholar 

  14. Avondstondt AM, Wallenstein M, D’Adamo CR, Ehsanipoor RM. Change in cost after 5 years of experience with robotic-assisted hysterectomy for the treatment of endometrial cancer. J Robot Surg. 2017. https://doi.org/10.1007/s11701-017-0700-6.

  15. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:e77–137.

    CrossRef  PubMed  Google Scholar 

  16. Montalescot G, Sabatine MS. Oral dual antiplatelet therapy: what have we learnt from recent trials? Eur Heart J. 2016;37:344–52.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Evidence Review Committee M, Bittl JA, Baber U, Bradley SM, Wijeysundera DN. Duration of dual antiplatelet therapy: a systematic review for the 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;134:e156–78.

    CrossRef  CAS  Google Scholar 

  18. Rist M, Hemmerling TM, Rauh R, Siebzehnrubl E, Jacobi KE. Influence of pneumoperitoneum and patient positioning on preload and splanchnic blood volume in laparoscopic surgery of the lower abdomen. J Clin Anesth. 2001;13:244–9.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Speicher PJ, Ganapathi AM, Englum BR, Vaslef SN. Laparoscopy is safe among patients with congestive heart failure undergoing general surgery procedures. Surgery. 2014;156:371–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Rauh R, Hemmerling TM, Rist M, Jacobi KE. Influence of pneumoperitoneum and patient positioning on respiratory system compliance. J Clin Anesth. 2001;13(5):361.

    CrossRef  CAS  PubMed  Google Scholar 

  21. Gerges FJ, Kanazi GE, Jabbour-Khoury SI. Anesthesia for laparoscopy: a review. J Clin Anesth. 2006;18:67–78.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Salihoglu Z, Demiroluk S, Baca B, Ayan F, Kara H. Effects of pneumoperitoneum and positioning on respiratory mechanics in chronic obstructive pulmonary disease patients during Nissen fundoplication. Surg Laparosc Endosc Percutan Tech. 2008;18:437–40.

    CrossRef  PubMed  Google Scholar 

  23. Silvanus MT, Groeben H, Peters J. Corticosteroids and inhaled salbutamol in patients with reversible airway obstruction markedly decrease the incidence of bronchospasm after tracheal intubation. Anesthesiology. 2004;100:1052–7.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Halverson A, Buchanan R, Jacobs L, et al. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc. 1998;12:266–9.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Irgau I, Koyfman Y, Tikellis JI. Elective intraoperative intracranial pressure monitoring during laparoscopic cholecystectomy. Arch Surg. 1995;130:1011–3.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12:10–4.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Kalmar AF, Foubert L, Hendrickx JF, et al. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895–9.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Jackman SV, Weingart JD, Kinsman SL, Docimo SG. Laparoscopic surgery in patients with ventriculoperitoneal shunts: safety and monitoring. J Urol. 2000;164(4):1352.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Sankpal R, Chandavarkar A, Chandavarkar M. Safety of laparoscopy in ventriculoperitoneal shunt patients. J Gynecol Endosc Surg. 2011;2:91–3.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Staikou C, Tsaroucha A, Mani A, Fassoulaki A. Transcranial Doppler monitoring of middle cerebral flow velocity in a patient with a ventriculoperitoneal shunt undergoing laparoscopy. J Clin Monit Comput. 2012;26:487–9.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Awad H, Santilli S, Ohr M, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109:473–8.

    CrossRef  PubMed  Google Scholar 

  33. Adisa AO, Onakpoya OH, Adenekan AT, Awe OO. Intraocular pressure changes with positioning during laparoscopy. JSLS. 2016;20(4):e2016.00078.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Berger JS, Taghreed A, Dayo L, Paul D. Anesthetic considerations for robot-assisted gynecologic and urology surgery. J Anesthe Clinic Res. 2013;4:8.

    Google Scholar 

  35. Lee M, Dallas R, Daniel C, Cotter F. Intraoperative management of increased intraocular pressure in a patient with glaucoma undergoing robotic prostatectomy in the trendelenburg position. A A Case Rep. 2016;6:19–21.

    CrossRef  PubMed  Google Scholar 

  36. Borahay MA, Patel PR, Walsh TM, et al. Intraocular pressure and steep Trendelenburg during minimally invasive gynecologic surgery: is there a risk? J Minim Invasive Gynecol. 2013;20:819–24.

    CrossRef  PubMed  Google Scholar 

  37. Sampat A, Parakati I, Kunnavakkam R, et al. Corneal abrasion in hysterectomy and prostatectomy: role of laparoscopic and robotic assistance. Anesthesiology. 2015;122:994–1001.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Roth S, Thisted RA, Erickson JP, Black S, Schreider BD. Eye injuries after nonocular surgery. A study of 60,965 anesthetics from 1988 to 1992. Anesthesiology. 1996;85:1020–7.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Awad H, Walker CM, Shaikh M, Dimitrova GT, Abaza R, O’Hara J. Anesthetic considerations for robotic prostatectomy: a review of the literature. J Clin Anesth. 2012;24:494–504.

    CrossRef  PubMed  Google Scholar 

  40. Gutt CN, Oniu T, Mehrabi A, et al. Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg. 2004;21:95–105.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Wiesenthal JD, Fazio LM, Perks AE, et al. Effect of pneumoperitoneum on renal tissue oxygenation and blood flow in a rat model. Urology. 2011;77:1508 e9–15.

    CrossRef  Google Scholar 

  42. Demyttenaere S, Feldman LS, Fried GM. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21:152–60.

    CrossRef  PubMed  Google Scholar 

  43. Bagaria M, Luck AM. Postoperative (pressure) alopecia following sacrocolpopexy. J Robot Surg. 2015;9:149–51.

    CrossRef  PubMed  Google Scholar 

  44. Gollapalli L, Papapetrou P, Gupta D, Fuleihan SF. Post-operative alopecia after robotic surgery in steep Trendelenburg position: a restated observation of pressure alopecia. Middle East J Anaesthesiol. 2013;22:343–5.

    PubMed  Google Scholar 

  45. Standards for Basic Anesthetic Monitoring. 2010. http://www.asahq.org/~/media/Sites/ASAHQ/Files/Public/Resources/standards-guidelines/standards-for-basic-anesthetic-monitoring.pdf. Accessed May 2017.

  46. Patient Safety. http://www.who.int/patientsafety/safesurgery/en/. Accessed May 2017.

  47. Yu EH, Tran DH, Lam SW, Irwin MG. Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia. 2016;71:1347–62.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Yoo YC, Shin S, Choi EK, Kim CY, Choi YD, Bai SJ. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anaesth. 2014;61:322–9.

    CrossRef  PubMed  Google Scholar 

  49. Yoo YC, Bai SJ, Lee KY, Shin S, Choi EK, Lee JW. Total intravenous anesthesia with propofol reduces postoperative nausea and vomiting in patients undergoing robot-assisted laparoscopic radical prostatectomy: a prospective randomized trial. Yonsei Med J. 2012;53:1197–202.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turner TB, Habib AS, Broadwater G, et al. Postoperative pain scores and narcotic use in robotic-assisted versus laparoscopic hysterectomy for endometrial cancer staging. J Minim Invasive Gynecol. 2015;22:1004–10.

    CrossRef  PubMed  Google Scholar 

  51. Pridgeon S, Bishop CV, Adshead J. Lower limb compartment syndrome as a complication of robot-assisted radical prostatectomy: the UK experience. BJU Int. 2013;112:485–8.

    CrossRef  PubMed  Google Scholar 

  52. Wen T, Deibert CM, Siringo FS, Spencer BA. Positioning-related complications of minimally invasive radical prostatectomies. J Endourol. 2014;28:660–7.

    CrossRef  PubMed  Google Scholar 

  53. Falabella A, Moore-Jeffries E, Sullivan MJ, Nelson R, Lew M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Robot. 2007;3:312–5.

    CrossRef  PubMed  Google Scholar 

  54. Odeberg S, Ljungqvist O, Svenberg T, et al. Haemodynamic effects of pneumoperitoneum and the influence of posture during anaesthesia for laparoscopic surgery. Acta Anaesthesiol Scand. 1994;38:276–83.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Mets B. Should norepinephrine, rather than phenylephrine, be considered the primary vasopressor in anesthetic practice? Anesth Analg. 2016;122:1707–14.

    CrossRef  PubMed  Google Scholar 

  56. Ko EM, Muto MG, Berkowitz RS, Feltmate CM. Robotic versus open radical hysterectomy: a comparative study at a single institution. Gynecol Oncol. 2008;111:425–30.

    CrossRef  PubMed  Google Scholar 

  57. Sert BM, Boggess JF, Ahmad S, et al. Robot-assisted versus open radical hysterectomy: a multi-institutional experience for early-stage cervical cancer. Eur J Surg Oncol. 2016;42:513–22.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Wallin E, Floter Radestad A, Falconer H. Introduction of robot-assisted radical hysterectomy for early stage cervical cancer: impact on complications, costs and oncologic outcome. Acta Obstet Gynecol Scand. 2017;96:536–42.

    CrossRef  PubMed  Google Scholar 

  59. Sprung J, Abdelmalak B, Schoenwald PK. Recurrent complete heart block in a healthy patient during laparoscopic electrocauterization of the Fallopian tube. Anesthesiology. 1998;88:1401–3.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Choi EM, Na S, Choi SH, An J, Rha KH, Oh YJ. Comparison of volume-controlled and pressure-controlled ventilation in steep Trendelenburg position for robot-assisted laparoscopic radical prostatectomy. J Clin Anesth. 2011;23:183–8.

    CrossRef  PubMed  Google Scholar 

  61. Jaju R, Jaju PB, Dubey M, Mohammad S, Bhargava AK. Comparison of volume controlled ventilation and pressure controlled ventilation in patients undergoing robot-assisted pelvic surgeries: an open-label trial. Indian J Anaesth. 2017;61:17–23.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Gupta K, Mehta Y, Sarin Jolly A, Khanna S. Anaesthesia for robotic gynaecological surgery. Anaesth Intensive Care. 2012;40:614–21.

    PubMed  CAS  Google Scholar 

  63. Lee JR. Anesthetic considerations for robotic surgery. Korean J Anesthesiol. 2014;66:3–11.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Kim WH, Hahm TS, Kim JA, et al. Prolonged inspiratory time produces better gas exchange in patients undergoing laparoscopic surgery: a randomised trial. Acta Anaesthesiol Scand. 2013;57:613–22.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Chang CH, Lee HK, Nam SH. The displacement of the tracheal tube during robot-assisted radical prostatectomy. Eur J Anaesthesiol. 2010;27:478–80.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Phong SV, Koh LK. Anaesthesia for robotic-assisted radical prostatectomy: considerations for laparoscopy in the Trendelenburg position. Anaesth Intensive Care. 2007;35:281–5.

    PubMed  CAS  Google Scholar 

  67. Mikaeili H, Yazdchi M, Tarzamni MK, Ansarin K, Ghasemzadeh M. Laryngeal ultrasonography versus cuff leak test in predicting postextubation stridor. J Cardiovasc Thorac Res. 2014;6:25–8.

    PubMed  PubMed Central  Google Scholar 

  68. Jackson SA, Laurence AS, Hill JC. Does post-laparoscopy pain relate to residual carbon dioxide? Anaesthesia. 1996;51:485–7.

    CrossRef  CAS  PubMed  Google Scholar 

  69. Torup H, Bogeskov M, Hansen EG, et al. Transversus abdominis plane (TAP) block after robot-assisted laparoscopic hysterectomy: a randomised clinical trial. Acta Anaesthesiol Scand. 2015;59:928–35.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Hutchins J, Delaney D, Vogel RI, et al. Ultrasound guided subcostal transversus abdominis plane (TAP) infiltration with liposomal bupivacaine for patients undergoing robotic assisted hysterectomy: a prospective randomized controlled study. Gynecol Oncol. 2015;138:609–13.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walters Haygood CL, Fauci JM, Huddleston-Colburn MK, Huh WK, Straughn JM. Outcomes of gynecologic oncology patients undergoing robotic-assisted laparoscopic procedures in a university setting. J Robot Surg. 2014;8:207–11.

    CrossRef  PubMed  Google Scholar 

  72. Gaia G, Holloway RW, Santoro L, Ahmad S, Di Silverio E, Spinillo A. Robotic-assisted hysterectomy for endometrial cancer compared with traditional laparoscopic and laparotomy approaches: a systematic review. Obstet Gynecol. 2010;116:1422–31.

    CrossRef  PubMed  Google Scholar 

  73. Serati M, Bogani G, Sorice P, et al. Robot-assisted sacrocolpopexy for pelvic organ prolapse: a systematic review and meta-analysis of comparative studies. Eur Urol. 2014;66:303–18.

    CrossRef  PubMed  Google Scholar 

  74. Fleming ND, Havrilesky LJ, Valea FA, et al. Analgesic and antiemetic needs following minimally invasive vs open staging for endometrial cancer. Am J Obstet Gynecol. 2011;204:65 e1–6.

    CrossRef  Google Scholar 

  75. Baker J, Janda M, Belavy D, Obermair A. Differences in epidural and analgesic use in patients with apparent stage I endometrial cancer treated by open versus laparoscopic surgery: results from the randomised LACE trial. Minim Invasive Surg. 2013;2013(764329)

    CrossRef  Google Scholar 

  76. Rawal N. Epidural technique for postoperative pain: gold standard no more? Reg Anesth Pain Med. 2012;37:310–7.

    CrossRef  PubMed  Google Scholar 

  77. Nakano S, Nakahira J, Sawai T, Kadono N, Minami T. Unexpected hemorrhage during robot-assisted laparoscopic prostatectomy: a case report. J Med Case Rep. 2016;10:240.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Kim CS, Kim JY, Kwon JY, et al. Venous air embolism during total laparoscopic hysterectomy: comparison to total abdominal hysterectomy. Anesthesiology. 2009;111:50–4.

    CrossRef  PubMed  Google Scholar 

  79. Kaye AD, Vadivelu N, Ahuja N, Mitra S, Silasi D, Urman RD. Anesthetic considerations in robotic-assisted gynecologic surgery. Ochsner J. 2013;13:517–24.

    PubMed  PubMed Central  Google Scholar 

  80. Joshi GP. Complications of laparoscopy. Anesthesiol Clin North Am. 2001;19:89–105.

    CrossRef  CAS  Google Scholar 

  81. Raveendran R, Prabu HN, Ninan S, Darmalingam S. Fast-track management of pneumothorax in laparoscopic surgery. Indian J Anaesth. 2011;55:91–2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Ludemann R, Krysztopik R, Jamieson GG, Watson DI. Pneumothorax during laparoscopy. Surg Endosc. 2003;17:1985–9.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Celik H, Cremins A, Jones KA, Harmanli O. Massive subcutaneous emphysema in robotic sacrocolpopexy. JSLS. 2013;17:245–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Crawford NM, Pathi SD, Corton MM. Pneumomediastinum after robotic sacrocolpopexy. Female Pelvic Med Reconstr Surg. 2014;20:56–8.

    CrossRef  PubMed  Google Scholar 

  85. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:381S–453S.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. Arch Intern Med. 2003;163:1711–7.

    CrossRef  PubMed  Google Scholar 

  87. Mueller MG, Pilecki MA, Catanzarite T, Jain U, Kim JY, Kenton K. Venous thromboembolism in reconstructive pelvic surgery. Am J Obstet Gynecol. 2014;211, 552 e1:–6.

    CrossRef  Google Scholar 

  88. Freeman AH, Barrie A, Lyon L, et al. Venous thromboembolism following minimally invasive surgery among women with endometrial cancer. Gynecol Oncol. 2016;142:267–72.

    CrossRef  PubMed  Google Scholar 

  89. Barber EL, Gehrig PA, Clarke-Pearson DL. Venous thromboembolism in minimally invasive compared with open hysterectomy for endometrial cancer. Obstet Gynecol. 2016;128:121–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  90. Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One. 2016;11:e0151470.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Sullivan OE, O’Sullivan S, Hewitt M, O’Reilly BA. Da Vinci robot emergency undocking protocol. J Robot Surg. 2016;10(3):251.

    CrossRef  PubMed  Google Scholar 

  92. Huser AS, Muller D, Brunkhorst V, et al. Simulated life-threatening emergency during robot-assisted surgery. J Endourol. 2014;28:717–21.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Galvin, E.M., de Graaff, H.J. (2018). Anesthesia for Robot Assisted Gynecological Procedures. In: , et al. Anesthesiology. Springer, Cham. https://doi.org/10.1007/978-3-319-74766-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74766-8_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74765-1

  • Online ISBN: 978-3-319-74766-8

  • eBook Packages: MedicineMedicine (R0)