A Random Tandem Network with Queues Modeled as Birth-Death Processes

  • Virginia Giorno
  • Amelia G. NobileEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)


We consider a tandem network consisting of an arbitrary but finite number \(R_m\) of queueing systems, where \(R_m\) is a discrete random variable with a suitable probability distribution. Each queueing system of the tandem network is modeled via a birth-death process and consists of an infinite buffer space and of a service center with a single server.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992)zbMATHGoogle Scholar
  2. 2.
    Baskett, F., Chandy, K.M., Muntz, R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, S.K.: An Introduction to Queueing Systems. Springer Science+Business Media, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Burke, P.J.: The output of a queueing system. Oper. Res. 4(6), 699–704 (1956)CrossRefGoogle Scholar
  5. 5.
    Di Crescenzo, A., Giorno, V., Nobile, A.G.: Constructing transient birth-death processes by means of suitable transformations. Appl. Math. Comput. 281, 152–171 (2016)MathSciNetGoogle Scholar
  6. 6.
    Giorno, V., Nobile, A.G., Spina, S.: On some time non-homogeneous queueing systems with catastrophes. Appl. Math. Comput. 245, 220–234 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Giorno, V., Nobile, A.G., Pirozzi, E.: A state-dependent queueing system with asymptotic logarithmic distribution. J. Math. Anal. Appl. 458, 949–966 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jackson, J.R.: Networks of waiting lines. Oper. Res. 5(4), 518–521 (1957)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lemoine, A.J.: State-of-the-art - Networks of queues - a survey of equilibrium analysis. Manag. Sci. 24(4), 464–481 (1997)CrossRefGoogle Scholar
  10. 10.
    Reich, E.: Waiting times when queues are in tandem. Ann. Math. Stat. 28(3), 768–773 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Serfozo, R.: Introduction to Stochastic Networks. Springer Science+Business Media, New York (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Williams, R.J.: Stochastic processing networks. Annu. Rev. Stat. Appl. 3, 323–345 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di SalernoFiscianoItaly

Personalised recommendations