Interactive Three-Dimensional Visualization System of the Vascular Structure in OCT Retinal Images

  • Joaquim de MouraEmail author
  • Jorge Novo
  • Marcos Ortega
  • Noelia Barreira
  • Manuel G. Penedo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)


This paper proposes an automated tool for the 3D visualization of the retinal arterio-venular tree using Optical Coherence Tomography (OCT) images. The methodology takes advantage of different image processing techniques that initially segments the vessel tree and estimates its corresponding calibers. Then, the depths for the entire vessel tree are also calculated. With all this information, the 3D reconstruction of the vessel tree is achieved, interpolating with B-splines all the segments, obtaining a smooth representation that facilitates its inspection. This model allows the visualization and manipulation of the 3D vessel tree by means of graphical affine transformations, including translation, scaling and rotation. Thus, the method offers a complete and comfortable visualization of the 3D real layout of the vasculature that permits to proceed with more reliable diagnostic processes involving the retinal microcirculation analysis.


Computer-aided diagnosis Vascular structure Retinal imaging Optical Coherence Tomography 



This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.


  1. 1.
    Doi, K.: Computer-aided diagnosis in medical imaging: achievements and challenges. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering. IFMBE, p. 96. Springer, Heidelberg (2009). Google Scholar
  2. 2.
    Huang, D., Swanson, E., Lin, C., Schuman, J., Stinson, W., Chang, W., Hee, M., Flotte, T., Gregory, K., Puliafito C.: Optical coherence tomography. Science (1991)Google Scholar
  3. 3.
    González, A., Penedo, M.G., Vázquez, S.G., Novo, J., Charlón, P.: Cost function selection for a graph-based segmentation in OCT retinal images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8112, pp. 125–132. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  4. 4.
    Novo, J., Penedo, M.G., Santos, J.: Optic disc segmentation by means of GA-optimized topological active nets. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 807–816. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  5. 5.
    Klein, R., Sharrett, A.R., Klein, B.E., Chambless, L.E., Cooper, L.S., Hubbard, L.D., Evans, G.: Are retinal arteriolar abnormalities related to atherosclerosis? The atherosclerosis risk in communities study. Arterioscler. Thromb. Vasc. Biol. 20, 1644–1650 (2000)CrossRefGoogle Scholar
  6. 6.
    Won, T.Y., Mitchell, P.: Hypertensive retinopathy. N. Engl. J. Med. 351, 2310–2317 (2004)CrossRefGoogle Scholar
  7. 7.
    Nguyen, T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diab. Rep. 113(9), 277–283 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Hsu, W., Lee, M.L.: Detection of retinal blood vessels based on nonlinear projections. J. Sig. Process. Syst. 55(1–3), 103 (2009)CrossRefGoogle Scholar
  9. 9.
    Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  10. 10.
    Leandro, J., Cesar, J., Jelinek, H.: Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques. In: Computer Graphics and Image Processing, pp. 84–90 (2001)Google Scholar
  11. 11.
    Espona, L., Carreira, M., Penedo, M., Ortega, M.: Retinal vessel tree segmentation using a deformable contour model. In: IEEE Transactions on Neural Networks, pp. 1–4 (2008)Google Scholar
  12. 12.
    Niemeijer, M., Garvin, M., Ginneken, B., Sonka, M., Abramo, M.: Vessel segmentation in 3D spectral OCT scans of the retina. Med. Imaging, vol. 6914, p. 69141R (2008)Google Scholar
  13. 13.
    Guimarães, P., Rodrigues, P., Bernardes, R., Serranho, P.: 3D blood vessels segmentation from optical coherence tomography. Acta Ophthalmol. 90(s249) (2012)Google Scholar
  14. 14.
    de Moura, J., Novo, J., Ortega, M., Charlón, P.: 3D retinal vessel tree segmentation and reconstruction with OCT images. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 716–726. Springer, Cham (2016). CrossRefGoogle Scholar
  15. 15.
    Biswas, S., Lovell, B.C.: Bezier and Splines in Image Processing and Machine Vision. Springer Science and Business Media, London (2008). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joaquim de Moura
    • 1
    Email author
  • Jorge Novo
    • 1
  • Marcos Ortega
    • 1
  • Noelia Barreira
    • 1
  • Manuel G. Penedo
    • 1
  1. 1.Department of ComputingUniversity of A CoruñaA CoruñaSpain

Personalised recommendations