The Inverse of the Continuous Wavelet Transform

  • Ferenc WeiszEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)


In this paper we summarize some recent results about the convergence of the inverse of the continuous wavelet transform.


  1. 1.
    Ashurov, R.: Convergence of the continuous wavelet transforms on the entire Lebesgue set of \(L_{p}\)-functions. Int. J. Wavelets Multiresolut. Inf. Process. 9, 675–683 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bownik, M.: Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Am. Math. Soc. 133, 3535–3542 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chui, C.K.: An Introduction to Wavelets. Academic Press, Boston (1992)zbMATHGoogle Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, New Jersey (2004)zbMATHGoogle Scholar
  7. 7.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kelly, S.E., Kon, M.A., Raphael, L.A.: Local convergence for wavelet expansions. J. Func. Anal. 126, 102–138 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, K., Sun, W.: Pointwise convergence of the Calderon reproducing formula. J. Fourier Anal. Appl. 18, 439–455 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rao, M., Sikic, H., Song, R.: Application of Carleson’s theorem to wavelet inversion. Control Cybern. 23, 761–771 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Riesz, M.: Sur la sommation des séries de Fourier. Acta Sci. Math. (Szeged) 1, 104–113 (1923)zbMATHGoogle Scholar
  13. 13.
    Rubin, B., Shamir, E.: Carlderon’s reproducing formula and singular integral operators on a real line. Integr. Equat. Oper. Theory 21, 78–92 (1995)CrossRefGoogle Scholar
  14. 14.
    Saeki, S.: On the reproducing formula of Calderon. J. Fourier Anal. Appl. 2, 15–28 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Walnut, D.F.: An Introduction to Wavelet Analysis. Birkhäuser, Basel (2002)zbMATHGoogle Scholar
  16. 16.
    Weisz, F.: Inversion formulas for the continuous wavelet transform. Acta Math. Hung. 138, 237–258 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Weisz, F.: Convergence of the inverse continuous wavelet transform in Wiener amalgam spaces. Analysis 35, 33–46 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weisz, F.: Inverse continuous wavelet transform in Pringsheim’s sense on Wiener amalgam spaces. Acta Math. Hung. 145, 392–415 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Weisz, F., Dutta, H., Rhoades, B.: Multi-dimensional summability theory and continuous wavelet transform. Current Topics in Summability Theory and Applications, pp. 241–311. Springer, Singapore (2016). CrossRefGoogle Scholar
  20. 20.
    Wilson, M.: Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics. Springer, Berlin (2008). zbMATHGoogle Scholar
  21. 21.
    Wilson, M.: How fast and in what sense(s) does the Calderon reproducing formula converge? J. Fourier Anal. Appl. 16, 768–785 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zayed, A.: Pointwise convergence of a class of non-orthogonal wavelet expansions. Proc. Am. Math. Soc. 128, 3629–3637 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Numerical AnalysisEötvös L. UniversityBudapestHungary

Personalised recommendations