Heartbeat Classification of ECG Signals Using Rational Function Systems

  • Gergő BognárEmail author
  • Sándor Fridli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)


The main idea of this paper is to show that rational orthogonal function systems, called Malmquist-Takenaka (MT) systems can effectively be used for ECG heartbeat classification. The idea behind using these systems is the adaptive nature of them. Then the constructed feature vector consists of two main parts, called dynamic and morphological parameters. The latter ones contain the coefficients of the orthogonal projection with respect to the MT systems. Then Support Vector Machine algorithm was used for classifying the heartbeats into the usual 16 arrhythmia classes. The comparison test were performed on the MIT-BIH arrhythmia database. The results show that our algorithm outperforms the previous ones in many respects.


ECG signals Heartbeat classification Rational functions Malmquist-Takenaka systems Support vector machine 


  1. 1.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Techol. 2, 27: 1–27: 27 (2011). Google Scholar
  2. 2.
    de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004). CrossRefGoogle Scholar
  3. 3.
    Cortes, C., Vapnik, V.N.: Support-vector networks. J. Mach. Learn. 20(3), 1–25 (1995). zbMATHGoogle Scholar
  4. 4.
    Fridli, S., Lócsi, L., Schipp, F.: Rational function systems in ECG processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 88–95. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  5. 5.
    Fridli, S., Schipp, F.: Biorthogonal systems to rational functions. Ann. Univ. Sci. Bp. Sect. Comp. 35, 95–105 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fridli, S., Kovács, P., Lócsi, L., Schipp, F.: Rational modeling of multi-lead QRS complexes in ECG signals. Ann. Univ. Sci. Bp. Sect. Comp. 37, 145–155 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gilián, Z., Kovács, P., Samiee, K.: Rhythm-based accuracy improvement of heart beat detection algorithms. In: Computing in Cardiology Conference, pp. 269–272 (2014)Google Scholar
  8. 8.
    Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000). CrossRefGoogle Scholar
  9. 9.
    Heuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B. (eds.): Modelling and Identification with Rational Orthogonal Basis Functions. Springer-Verlag, London Limited, London (2005)Google Scholar
  10. 10.
    Jiang, X., Zhang, L.Q., Zhao, Q.B., Albayrak, S.: ECG arrhythmias recognition system based on independent component analysis feature extraction. In: Proceedings IEEE Region 10 Conference, pp. 1–4. (2006).
  11. 11.
    Kovács, P., Lócsi, L.: RAIT: the rational approximation and interpolation toolbox for Matlab, with experiments on ECG signals. Int. J. Adv. Telecommun. Electech. Sign. Syst. 1(2–3), 67–75 (2012). Google Scholar
  12. 12.
    Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000). CrossRefGoogle Scholar
  13. 13.
    Lócsi, L.: Approximating poles of complex rational functions. Acta Univ. Sapientiae-Math. 1(2), 169–182 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Luz, E.J.S., Schwartz, W.R., Cámara-Cháveza, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016). CrossRefGoogle Scholar
  15. 15.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001). CrossRefGoogle Scholar
  16. 16.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Osowski, S., Hoa, L.T., Markiewic, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51(4), 582–589 (2004). CrossRefGoogle Scholar
  18. 18.
    Prasad, G.K., Sahambi, J.S.: Classification of ECG arrhythmias using multi-resolution analysis and neural networks. In: Proceeding of Conference Convergent Technology Asia-Pacific Region, pp. 227–231 (2003).
  19. 19.
    Robert, K., Colleen, E.C.: Basis and Treatment of Cardiac Arrhythmias, 1st edn. Springer, New York (2006). Google Scholar
  20. 20.
    Rodriguez, J., Goni, A., Illarramendi, A.: Real-time classification of ECGs on a PDA. IEEE Trans. Inf. Techol. Biomed. 9(1), 23–34 (2005). CrossRefGoogle Scholar
  21. 21.
    Sansone, M., Fusco, R., Pepino, A., Sansone, C.: Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J. Healthc. Eng. 4(4), 465–504 (2013). CrossRefGoogle Scholar
  22. 22.
    Ye, C., Kumar, B.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012). CrossRefGoogle Scholar
  23. 23.
    Zhang, D.: Wavelet approach for ECG baseline wander correction and noise reduction. In: Proceedings IEEE International Conference Engineering Medicine Biology Society, pp. 1212–1215 (2005).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Numerical Analysis, Faculty of InformaticsELTE Eötvös Loránd UniversityBudapestHungary

Personalised recommendations