Skip to main content

ER Stress, Human Health and Role of Ca2+-Binding Chaperones

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

  • 991 Accesses

Abstract

The Endoplasmic Reticulum (ER) is a dynamic and versatile organelle involved in many critical functions of the cell. It is the major Ca2+ storehouse of the cell and the intra luminal [Ca2+] influences several cellular processes including synthesis of protein, lipids and sterols. Therefore, the concentration of Ca2+ is tightly controlled and buffered by several Ca2+-binding proteins in the ER. Several physiological and pathological disturbances can also perturb ER homeostasis, leading to the accumulation of misfolded or unfolded proteins, a condition termed as ER stress. The ER responds well to the stress by activating a series of signaling cascades known as unfolded protein response (UPR) in order to rescue ER functions. The adaptive response of the UPR pathway activates the transcription of several genes including molecular chaperones which aid in the folding of misfolded proteins. In addition to Ca2+-binding (that regulates their function), these ER-resident calcium binding proteins play a major role in folding, post translational processing and quality control of other nascent polypeptide chains and hence can be classified as calcium-binding chaperones (CaBC). The role of CaBC in the UPR pathway is quite indispensable and will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajani, A., Rahimi, A., Fadai, F., Ebrahimi, A., Najmabadi, H., & Ohadi, M. (2006). A point mutation at the calreticulin gene core promoter conserved sequence in a case of schizophrenia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B, 294–295.

    Article  CAS  Google Scholar 

  • Ali, M. M., Bagratuni, T., Davenport, E. L., et al. (2011). Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. The EMBO Journal, 30, 894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon, T., van Anken, E., Pincus, D., et al. (2009). Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 457, 736–740.

    Article  CAS  PubMed  Google Scholar 

  • Argon, Y., & Simen, B. B. (1999). GRP94, an ER chaperone with protein and peptide binding properties. Seminars in Cell & Developmental Biology, 10, 495–505.

    Article  CAS  Google Scholar 

  • Arosio, P., Michaels, T. C., Linse, S., et al. (2016). Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 7, 10948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashby, M. C., & Tepikin, A. V. (2001). ER calcium and the functions of intracellular organelles. Seminars in Cell & Developmental Biology, 12, 11–17.

    Article  CAS  Google Scholar 

  • Baksh, S., & Michalak, M. (1991). Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. The Journal of Biological Chemistry, 266, 21458–21465.

    CAS  PubMed  Google Scholar 

  • Baksh, S., Burns, K., Andrin, C., & Michalak, M. (1995). Interaction of calreticulin with protein disulfide isomerase. The Journal of Biological Chemistry, 270, 31338–31344.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, O., & Walz, B. (2001). Endoplasmic reticulum of animal cells and its organization into structural and functional domains. International Review of Cytology, 205, 149–214.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann, R. P., Mizzen, L. E., & Welch, W. J. (1990). Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science, 248, 850–854.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron, J. J., Brenner, M. B., Thomas, D. Y., & Williams, D. B. (1994). Calnexin: A membrane-bound chaperone of the endoplasmic reticulum. Trends in Biochemical Sciences, 19, 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Marissal, N., Sunyach, C., Marissal, T., Raoul, C., & Pettmann, B. (2015). Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiology of Disease, 73, 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: Dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4, 517–529.

    Article  CAS  PubMed  Google Scholar 

  • Bonito-Oliva, A., Barbash, S., Sakmar, T. P., & Graham, W. V. (2017). Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Scientific Reports, 7, 42880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdi, M., Demady, D., Martin, J. L., et al. (1995). cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: Characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase. Archives of Biochemistry and Biophysics, 323, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Braakman, I., Helenius, J., & Helenius, A. (1992). Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature, 356, 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky, J. L., & McCracken, A. A. (1997). ER-associated and proteasome mediated protein degradation: How two topologically restricted events came together. Trends in Cell Biology, 7, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Cao, S. S., & Kaufman, R. J. (2012). Unfolded protein response. Current Biology, 22, R622–R626.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., & Brandizzi, F. (2012). AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. The Plant Journal, 69, 266–277.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., & Brandizzi, F. (2013). IRE1: ER stress sensor and cell fate executor. Trends in Cell Biology, 23, 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Shen, J., & Prywes, R. (2002). The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. The Journal of Biological Chemistry, 277, 13045–13052.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Shang, W. H., Adachi, Y., Hirose, K., Ferrari, D. M., & Kamata, T. (2008). A possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72. The Biochemical Journal, 416, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Coe, H., & Michalak, M. (2009). Calcium binding chaperones of the endoplasmic reticulum. General Physiology and Biophysics, 28, F96–F103.

    PubMed  Google Scholar 

  • Cooper, A. A., Gitler, A. D., Cashikar, A., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313, 324–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett, E. F., & Michalak, M. (2000). Calcium, a signaling molecule in the endoplasmic reticulum? Trends in Biochemical Sciences, 25, 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, E. F., Michalak, K. M., Oikawa, K., et al. (2000). The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. The Journal of Biological Chemistry, 275, 27177–27185.

    CAS  PubMed  Google Scholar 

  • Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M., & Walter, P. (2005). On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 102, 18773–18784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaunay, A., Bromberg, K. D., Hayashi, Y., et al. (2008). The ER-bound RING finger protein 5 (RNF5/RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS One, 3, e1609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denisov, A. Y., Maattanen, P., Dabrowski, C., Kozlov, G., Thomas, D. Y., & Gehring, K. (2009). Solution structure of the bb’ domains of human protein disulfide isomerase. The FEBS Journal, 276, 1440–1449.

    Article  CAS  PubMed  Google Scholar 

  • Denzel, A., Molinari, M., Trigueros, C., et al. (2002). Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Molecular and Cellular Biology, 22, 7398–7404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorner, A. J., Wasley, L. C., & Kaufman, R. J. (1990). Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proceedings of the National Academy of Sciences of the United States of America, 87, 7429–7432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eletto, D., Dersh, D., & Argon, Y. (2010). GRP94 in ER quality control and stress responses. Seminars in Cell & Developmental Biology, 21, 479–485.

    Article  CAS  Google Scholar 

  • Ellgaard, L., & Ruddock, L. W. (2005). The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Reports, 6, 28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fels, D. R., & Koumenis, C. (2006). The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology & Therapy, 5, 723–728.

    Article  CAS  Google Scholar 

  • Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3, E255–E263.

    Article  CAS  PubMed  Google Scholar 

  • Fliegel, L., Burns, K., MacLennan, D. H., Reithmeier, R. A., & Michalak, M. (1989). Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. The Journal of Biological Chemistry, 264, 21522–21528.

    CAS  PubMed  Google Scholar 

  • Forster, M. L., Sivick, K., Park, Y. N., Arvan, P., Lencer, W. I., & Tsai, B. (2006). Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation. The Journal of Cell Biology, 173, 853–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frand, A. R., Cuozzo, J. W., & Kaiser, C. A. (2000). Pathways for protein disulphide bond formation. Trends in Cell Biology, 10, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Gaut, J. R., & Hendershot, L. M. (1993). The modification and assembly of proteins in the endoplasmic reticulum. Current Opinion in Cell Biology, 5, 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez, P., Woehlbier, U., Chian, R. J., et al. (2015). Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene, 566, 158–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, W. V., Bonito-Oliva, A., & Sakmar, T. P. (2017). Update on Alzheimer’s disease therapy and prevention strategies. Annual Review of Medicine, 68, 413–430.

    Article  CAS  PubMed  Google Scholar 

  • Groenendyk, J., Agellon, L. B., & Michalak, M. (2013). Coping with endoplasmic reticulum stress in the cardiovascular system. Annual Review of Physiology, 75, 49–67.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., Kapoor, N., Raleigh, D. P., & Sakmar, T. P. (2012). Nucleobindin 1 caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril formation. Journal of Molecular Biology, 421, 378–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, I. G., & Wabl, M. (1983). Immunoglobulin heavy chain binding protein. Nature, 306, 387–389.

    Article  CAS  PubMed  Google Scholar 

  • Halperin, L., Jung, J., & Michalak, M. (2014). The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life, 66, 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, C., & Helenius, A. (1995). Quality control in the secretory pathway. Current Opinion in Cell Biology, 7, 523–529.

    Article  CAS  PubMed  Google Scholar 

  • Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5, 897–904.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F. U., Martin, J., & Neupert, W. (1992). Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60. Annual Review of Biophysics and Biomolecular Structure, 21, 293–322.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, D. N., & Molinari, M. (2007). In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiological Reviews, 87, 1377–1408.

    Article  CAS  PubMed  Google Scholar 

  • Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73, 1019–1049.

    Article  CAS  PubMed  Google Scholar 

  • Hendershot, L. M. (2004). The ER function BiP is a master regulator of ER function. Mount Sinai Journal of Medicine, 71, 289–297.

    PubMed  Google Scholar 

  • Hetz, C. (2012). The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews. Molecular Cell Biology, 13, 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Hetz, C., & Glimcher, L. H. (2009). Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Molecular Cell, 35, 551–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz, C., Martinon, F., Rodriguez, D., & Glimcher, L. H. (2011). The unfolded protein response: Integrating stress signals through the stress sensor IRE1alpha. Physiological Reviews, 91, 1219–1243.

    Article  CAS  PubMed  Google Scholar 

  • Honore, B. (2009). The rapidly expanding CREC protein family: Members, localization, function, and role in disease. BioEssays, 31, 262–277.

    Article  CAS  PubMed  Google Scholar 

  • Hurtley, S. M., & Helenius, A. (1989). Protein oligomerization in the endoplasmic reticulum. Annual Review of Cell Biology, 5, 277–307.

    Article  CAS  PubMed  Google Scholar 

  • Irvine, A. G., Wallis, A. K., Sanghera, N., et al. (2014). Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway. PLoS One, 9, e82511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, J., Prasad, K., Lafer, E. M., & Sousa, R. (2005). Structural basis of interdomain communication in the Hsc70 chaperone. Molecular Cell, 20, 513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, H., Mimura, N., Kashio, M., Koseki, H., & Aoe, T. (2014). Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP. PLoS One, 9, e112837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kakiuchi, C., Ishiwata, M., Nanko, S., et al. (2005). Functional polymorphisms of HSPA5: Possible association with bipolar disorder. Biochemical and Biophysical Research Communications, 336, 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  • Kakiuchi, C., Ishiwata, M., Nanko, S., et al. (2007). Association analysis of HSP90B1 with bipolar disorder. Journal of Human Genetics, 52, 794–803.

    Article  CAS  PubMed  Google Scholar 

  • Kakuyama, H., Soderberg, L., Horigome, K., et al. (2005). CLAC binds to aggregated Abeta and Abeta fragments, and attenuates fibril elongation. Biochemistry, 44, 15602–15609.

    Article  CAS  PubMed  Google Scholar 

  • Kanuru, M., & Aradhyam, G. K. (2017). Chaperone-like activity of Calnuc prevents amyloid aggregation. Biochemistry, 56, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Kanuru, M., Samuel, J. J., Balivada, L. M., & Aradhyam, G. K. (2009). Ion-binding properties of Calnuc, Ca2+ versus Mg2+-Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein. The FEBS Journal, 276, 2529–2546.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R. J. (2002). Orchestrating the unfolded protein response in health and disease. The Journal of Clinical Investigation, 110, 1389–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano, J., Kotani, T., Ogata, Y., et al. (2000). CALNUC (nucleobindin) is localized in the Golgi apparatus in insect cells. European Journal of Cell Biology, 79, 208–217.

    Article  CAS  PubMed  Google Scholar 

  • Kim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 7, 1013–1030.

    Article  CAS  PubMed  Google Scholar 

  • Klappa, P., Ruddock, L. W., Darby, N. J., & Freedman, R. B. (1998). The b’ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. The EMBO Journal, 17, 927–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korennykh, A. V., Egea, P. F., Korostelev, A. A., et al. (2009). The unfolded protein response signals through high-order assembly of Ire1. Nature, 457, 687–693.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov, G., Maattanen, P., Schrag, J. D., et al. (2006). Crystal structure of the bb’ domains of the protein disulfide isomerase ERp57. Structure, 14, 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov, G., Määttänen, P., Schrag, J. D., et al. (2009). Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72. Structure, 17, 651–659.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov, G., Bastos-Aristizabal, S., Maattanen, P., et al. (2010). Structural basis of cyclophilin B binding by the calnexin/calreticulin P-domain. The Journal of Biological Chemistry, 285, 35551–35557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., & Sambrook, J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature, 332, 462–464.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, A., Groenendyk, J., Bedard, K., et al. (2010). Calnexin deficiency leads to dysmyelination. The Journal of Biological Chemistry, 285, 18928–18938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause, K. H., & Michalak, M. (1997). Calreticulin. Cell, 88, 439–443.

    Article  CAS  PubMed  Google Scholar 

  • Lavoie, C., Meerloo, T., Lin, P., & Farquhar, M. G. (2002). Calnuc, an EF-hand Ca2+-binding protein, is stored and processed in the Golgi and secreted by the constitutive-like pathway in AtT20 cells. Molecular Endocrinology, 16, 2462–2474.

    Article  CAS  PubMed  Google Scholar 

  • Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., & Williams, D. B. (2002). Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. The Journal of Biological Chemistry, 277, 29686–29697.

    Article  CAS  PubMed  Google Scholar 

  • Lebeche, D., Lucero, H. A., & Kaminer, B. (1994). Calcium binding properties of rabbit liver protein disulfide isomerase. Biochemical and Biophysical Research Communications, 202, 556–561.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23, 7448–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. H., Kwon, E. J., & Kim, D. H. (2013). Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochemical and Biophysical Research Communications, 439, 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Leustek, T., Toledo, H., Brot, N., & Weissbach, H. (1991). Calcium-dependent autophosphorylation of the glucose-regulated protein, Grp78. Archives of Biochemistry and Biophysics, 289, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., & Camacho, P. (2004). Ca2+-dependent redox modulation of SERCA2b by ERp57. The Journal of Cell Biology, 164, 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Li, G., Mongillo, M., Chin, K. T., et al. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. The Journal of Cell Biology, 186, 783–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lievremont, J. P., Rizzuto, R., Hendershot, L., & Meldolesi, J. (1997). BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. The Journal of Biological Chemistry, 272, 30873–30879.

    Article  CAS  PubMed  Google Scholar 

  • Lin, P., Le-Niculescu, H., Hofmeister, R., et al. (1998). The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. The Journal of Cell Biology, 141, 1515–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, P., Yao, Y., Hofmeister, R., Tsien, R. Y., & Farquhar, M. G. (1999). Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. The Journal of Cell Biology, 145, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J. H., Li, H., Yasumura, D., et al. (2007a). IRE1 signaling affects cell fate during the unfolded protein response. Science, 318, 944–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, P., Li, F., Zhang, Y. W., et al. (2007b). Calnuc binds to Alzheimer's beta-amyloid precursor protein and affects its biogenesis. Journal of Neurochemistry, 100, 1505–1514.

    CAS  PubMed  Google Scholar 

  • Lipskaia, L., Hulot, J. S., & Lompre, A. M. (2009). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflügers Archiv, 457, 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Logue, S. E., & Gorman, A. M. (2013). Current Concepts in ER Stress-Induced Apoptosis. Journal of Carcinogenesis & Mutagenesis, s6.

    Google Scholar 

  • Lucero, H. A., & Kaminer, B. (1999). The role of calcium on the activity of ER calcistorin/protein-disulfide isomerase and the significance of the Cterminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. The Journal of Biological Chemistry, 274, 3243–3251.

    Article  CAS  PubMed  Google Scholar 

  • Luo, S., Mao, C., Lee, B., & Lee, A. S. (2006). GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellular Biology, 26, 5688–5697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., & Hendershot, L. M. (2004). ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy, 28, 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T., & Klann, E. (2014). PERK: A novel therapeutic target for neurodegenerative diseases? Alzheimer’s Research & Therapy, 6, 30.

    Article  Google Scholar 

  • Maattanen, P., Kozlov, G., Gehring, K., & Thomas, D. Y. (2006). ERp57 and PDI: Multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations. Biochemistry and Cell Biology, 84, 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Macer, D. R., & Koch, G. L. (1988). Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. Journal of Cell Science, 91, 61–70.

    CAS  PubMed  Google Scholar 

  • Malhotra, J. D., & Kaufman, R. J. (2007a). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell & Developmental Biology, 18, 716–731.

    Article  CAS  Google Scholar 

  • Malhotra, J. D., & Kaufman, R. J. (2007b). Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxidants & Redox Signaling, 9, 2277–2293.

    Article  CAS  Google Scholar 

  • Mansson, C., Kakkar, V., Monsellier, E., et al. (2014). DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress & Chaperones, 19, 227–239.

    Article  CAS  Google Scholar 

  • Mao, C., Wang, M., Luo, B., et al. (2010). Targeted mutation of the mouse Grp94 gene disrupts development and perturbs endoplasmic reticulum stress signaling. PLoS One, 5, e10852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marciniak, S. J., Yun, C. Y., Oyadomari, S., et al. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & Development, 18, 3066–3077.

    Article  CAS  Google Scholar 

  • Martin, V., Groenendyk, J., Steiner, S. S., et al. (2006). Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. The Journal of Biological Chemistry, 281, 2338–2346.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken, A. A., & Brodsky, J. L. (2003). Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). BioEssays, 25, 868–877.

    Article  CAS  PubMed  Google Scholar 

  • McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., & Holbrook, N. J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology, 21, 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesaeli, N., Nakamura, K., Zvaritch, E., et al. (1999). Calreticulin is essential for cardiac development. The Journal of Cell Biology, 144, 857–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier, L., Usherwood, Y. K., Chung, K. T., & Hendershot, L. M. (2002). A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Molecular Biology of the Cell, 13, 4456–4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K., & Opas, M. (1999). Calreticulin: One protein, one gene, many functions. The Biochemical Journal, 344, 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak, M., Robert Parker, J. M., & Opas, M. (2002). Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 32, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. The Biochemical Journal, 417, 651–666.

    Article  CAS  PubMed  Google Scholar 

  • Minamino, T., & Kitakaze, M. (2010). ER stress in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 48, 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  • Molinari, M., & Helenius, A. (2000). Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science, 288, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Morito, D., & Nagata, K. (2015). Pathogenic hijacking of ER-associated degradation: Is ERAD flexible? Molecular Cell, 59, 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews. Neuroscience, 6, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K., & Hartl, F. U. (2000). Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proceedings of the National Academy of Sciences of the United States of America, 97, 7841–7846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagashima, Y., Mishiba, K., Suzuki, E., Shimada, Y., Iwata, Y., & Koizumi, N. (2011). Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Scientific Reports, 1(29). https://doi.org/10.1038/srep00029.

  • Naidoo, N. (2009). ER and aging-protein folding and the ER stress response. Ageing Research Reviews, 8, 150–159.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Zuppini, A., Arnaudeau, S., et al. (2001). Functional specialization of calreticulin domains. The Journal of Cell Biology, 154, 961–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navid, F., & Colbert, R. A. (2017). Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nature Reviews Rheumatology, 13, 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Nigam, S. K., Goldberg, A. L., Ho, S., Rohde, M. F., Bush, K. T., & Sherman, M. (1994). A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. The Journal of Biological Chemistry, 269, 1744–1749.

    CAS  PubMed  Google Scholar 

  • Nishikawa, S., Brodsky, J. L., & Nakatsukasa, K. (2005). Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). Journal of Biochemistry, 137(5), 551.

    Article  CAS  PubMed  Google Scholar 

  • Nishitoh, H., Saitoh, M., Mochida, Y., et al. (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Molecular Cell, 2, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Nishitoh, H., Matsuzawa, A., Tobiume, K., et al. (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes & Development, 16, 1345–1355.

    Article  CAS  Google Scholar 

  • Normington, K., Kohno, K., Kozutsumi, Y., Gething, M. J., & Sambrook, J. (1989). S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell, 57, 1223–1236.

    Article  CAS  PubMed  Google Scholar 

  • Okada, T., Haze, K., Nadanaka, S., et al. (2003). A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. The Journal of Biological Chemistry, 278, 31024–31032.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J. D., van der Wal, F. J., Bulleid, N. J., & High, S. (1997). Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science, 275, 86–88.

    Article  CAS  PubMed  Google Scholar 

  • Oslowski, C. M., & Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in Enzymology, 490, 71–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrovsky, O., Makarewich, C. A., Snapp, E. L., & Argon, Y. (2009). An essential role for ATP binding and hydrolysis in the chaperone activity of GRP94 in cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 11600–11605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostwald, T. J., & MacLennan, D. H. (1974). Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. The Journal of Biological Chemistry, 249, 974–979.

    CAS  PubMed  Google Scholar 

  • Otero, J. H., Lizak, B., & Hendershot, L. M. (2010). Life and death of a BiP substrate. Seminars in Cell & Developmental Biology, 21, 472–478.

    Article  CAS  Google Scholar 

  • Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11, 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Oyadomari, S., Koizumi, A., Takeda, K., et al. (2002). Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. The Journal of Clinical Investigation, 109, 525–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. W., & Ozcan, U. (2013). Potential for therapeutic manipulation of the UPR in disease. Seminars in Immunopathology, 35, 351–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock, S., Kozlov, G., Pelletier, M. F., et al. (2004). Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. The EMBO Journal, 23, 1020–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primm, T. P., Walker, K. W., & Gilbert, H. F. (1996). Facilitated protein aggregation. Effects of calcium on the chaperone and anti-chaperone activity of protein disulfide-isomerase. The Journal of Biological Chemistry, 271, 33664–33669.

    Article  CAS  PubMed  Google Scholar 

  • Prins, D., Groenendyk, J., Touret, N., & Michalak, M. (2011). Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Reports, 12, 1182–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthalakath, H., O’Reilly, L. A., Gunn, P., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 129, 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, J. D., & Sanderson, J. (2009). The mechanisms of calcium homeostasis and signalling in the lens. Experimental Eye Research, 88, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Rodan, A. R., Simons, J. F., Trombetta, E. S., & Helenius, A. (1996). N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. The EMBO Journal, 15, 6921–6930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron, D. (2002). Proteotoxicity in the endoplasmic reticulum: Lessons from the Akita diabetic mouse. The Journal of Clinical Investigation, 109, 443–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron, D., & Hubbard, S. R. (2008). How IRE1 reacts to ER stress. Cell, 132, 24–26.

    Article  CAS  PubMed  Google Scholar 

  • Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews. Molecular Cell Biology, 8, 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Russell, S. J., Ruddock, L. W., Salo, K. E., et al. (2004). The primary substrate binding site in the b' domain of ERp57 is adapted for endoplasmic reticulum lectin association. The Journal of Biological Chemistry, 279, 18861–18869.

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: Coping with stress. Trends in Cell Biology, 14, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833, 3460–3470.

    Article  CAS  PubMed  Google Scholar 

  • Schonthal, A. H. (2012). Endoplasmic reticulum stress: Its role in disease and novel prospects for therapy. Scientifica, 2012(857516), 1–26.

    Article  CAS  Google Scholar 

  • Schrag, J. D., Bergeron, J. J., Li, Y., et al. (2001). The structure of calnexin, an ER chaperone involved in quality control of protein folding. Molecular Cell, 8, 633–644.

    Article  CAS  PubMed  Google Scholar 

  • Schrag, J. D., Procopio, D. O., Cygler, M., Thomas, D. Y., & Bergeron, J. J. (2003). Lectin control of protein folding and sorting in the secretory pathway. Trends in Biochemical Sciences, 28, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Schroder, M. (2008). Endoplasmic reticulum stress responses. Cellular and Molecular Life Sciences, 65, 862–894.

    Article  CAS  PubMed  Google Scholar 

  • Schroder, M., & Kaufman, R. J. (2005a). ER stress and the unfolded protein response. Mutation Research, 569, 29–63.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, M., & Kaufman, R. J. (2005b). The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–789.

    Article  PubMed  CAS  Google Scholar 

  • Shamu, C. E., & Walter, P. (1996). Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. The EMBO Journal, 15, 3028–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, J., Chen, X., Hendershot, L., & Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Developmental Cell, 3, 99–111.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Vattem, K. M., Sood, R., et al. (1998). Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Molecular and Cellular Biology, 18, 7499–7509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, B., Scheuner, D., Ron, D., Pennathur, S., & Kaufman, R. J. (2008). Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. The Journal of Clinical Investigation, 118, 3378–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriram, M., Osipiuk, J., Freeman, B., Morimoto, R., & Joachimiak, A. (1997). Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure, 5, 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Szegezdi, E., Logue, S. E., Gorman, A. M., & Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports, 7, 880–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., Niidome, T., Akaike, A., Kihara, T., & Sugimoto, H. (2009). Amyloid precursor protein promotes endoplasmic reticulum stress-induced cell death via C/EBP homologous protein-mediated pathway. Journal of Neurochemistry, 109, 1324–1337.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. W., & Laude, A. J. (2002). IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium, 32, 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Tirasophon, W., Welihinda, A. A., & Kaufman, R. J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes & Development, 12, 1812–1824.

    Article  CAS  Google Scholar 

  • Tripathi, R., Benz, N., Culleton, B., Trouve, P., & Ferec, C. (2014). Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator. PLoS One, 9, e104970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai, B., Ye, Y., & Rapoport, T. A. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Reviews. Molecular Cell Biology, 3, 246–255.

    Article  CAS  PubMed  Google Scholar 

  • Tsukumo, Y., Tomida, A., Kitahara, O., et al. (2007). Nucleobindin 1 controls the unfolded protein response by inhibiting ATF6 activation. The Journal of Biological Chemistry, 282, 29264–29272.

    Article  CAS  PubMed  Google Scholar 

  • Tsukumo, Y., Tsukahara, S., Saito, S., Tsuruo, T., & Tomida, A. (2009). A novel endoplasmic reticulum export signal: Proline at the +2-position from the signal peptide cleavage site. The Journal of Biological Chemistry, 284, 27500–27510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, B. P., & Weissman, J. S. (2004). Oxidative protein folding in eukaryotes: Mechanisms and consequences. The Journal of Cell Biology, 164, 341–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufanli, O., Telkoparan Akillilar, P., Acosta-Alvear, D., et al. (2017). Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 114, E1395–EE404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara, T., Nakamura, T., Yao, D., et al. (2006). S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513.

    Article  CAS  PubMed  Google Scholar 

  • Urano, F., Wang, X., Bertolotti, A., et al. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 287, 664–666.

    Article  CAS  PubMed  Google Scholar 

  • Urra, H., Dufey, E., Lisbona, F., Rojas-Rivera, D., & Hetz, C. (2013). When ER stress reaches a dead end. Biochimica et Biophysica Acta, 1833, 3507–3517.

    Article  CAS  PubMed  Google Scholar 

  • Vekich, J. A., Belmont, P. J., Thuerauf, D. J., & Glembotski, C. C. (2012). Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. Journal of Molecular and Cellular Cardiology, 53, 259–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Ye, R., Barron, E., et al. (2009). Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death and Differentiation, 17, 488.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Feng, H., Zheng, P., et al. (2012). The intracellular transport and secretion of calumenin-1/2 in living cells. PLoS One, 7, e35344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D. Y., Abbasi, C., El-Rass, S., et al. (2014). Endoplasmic reticulum resident protein 44 (ERp44) deficiency in mice and zebrafish leads to cardiac developmental and functional defects. Journal of the American Heart Association, 3, e001018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Q., Groenendyk, J., & Michalak, M. (2015). Glycoprotein quality control and endoplasmic reticulum stress. Molecules, 20, 13689–13704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sun, Y., Fu, Y., et al. (2017). Calumenin relieves cardiac injury by inhibiting ERS-initiated apoptosis during viral myocarditis. International Journal of Clinical and Experimental Pathology, 10, 7277–7284.

    PubMed  PubMed Central  Google Scholar 

  • Wendel, M., Sommarin, Y., Bergman, T., & Heinegard, D. (1995). Isolation, characterization, and primary structure of a calcium-binding 63-kDa bone protein. The Journal of Biological Chemistry, 270, 6125–6133.

    Article  CAS  PubMed  Google Scholar 

  • Williams, D. B. (2006). Beyond lectins: The calnexin/calreticulin chaperone system of the endoplasmic reticulum. Journal of Cell Science, 119, 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Winblad, B., Amouyel, P., Andrieu, S., et al. (2016). Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurology, 15, 455–532.

    Article  PubMed  Google Scholar 

  • Woehlbier, U., Colombo, A., Saaranen, M. J., et al. (2016). ALS-linked protein disulfide isomerase variants cause motor dysfunction. The EMBO Journal, 35, 845–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, C., & Ng, D. T. (2015). Glycosylation-directed quality control of protein folding. Nature Reviews. Molecular Cell Biology, 16, 742–752.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: Cell life and death decisions. The Journal of Clinical Investigation, 115, 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Zhao, D., Ren, J., & Yang, J. (2015). Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochimica et Biophysica Acta, 1852, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Rawson, R. B., Komuro, R., et al. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6, 1355–1364.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. The Journal of Biological Chemistry, 273, 33741–33749.

    Article  CAS  PubMed  Google Scholar 

  • Zapun, A., Darby, N. J., Tessier, D. C., Michalak, M., Bergeron, J. J., & Thomas, D. Y. (1998). Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. The Journal of Biological Chemistry, 273, 6009–6012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors presented herein was funded by DST, ICMR, CSIR and DBT. The authors also gratefully thank IIT Madras for the facility and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopala Krishna Aradhyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanasamy, S., Aradhyam, G.K. (2018). ER Stress, Human Health and Role of Ca2+-Binding Chaperones. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_9

Download citation

Publish with us

Policies and ethics