Skip to main content

Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

Abstract

During heat shock conditions a plethora of proteins are found to play a role in maintaining cellular homeostasis. They play diverse roles from folding of non-native proteins to the proteasomal degradation of harmful aggregates. A few out of these heat shock proteins (Hsp) help in the folding of non-native substrate proteins and are termed as molecular chaperones. Various structural and functional adaptations make them work efficiently under both normal and stress conditions. These adaptations involve transitions to oligomeric structures, thermal stability, efficient binding affinity for substrates and co-chaperones, elevated synthesis during shock conditions, switching between ‘holding’ and ‘folding’ functions etc. Their ability to function under various kinds of stress conditions like heat shock, cancers, neurodegenerative diseases, and in burdened cells due to recombinant protein production makes them therapeutically and industrially important biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abravaya, K., et al. (1992). The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes and Development, 6(7), 1153–1164.

    Article  CAS  PubMed  Google Scholar 

  • Agard, D. (1993). To fold or not to fold. Science, 260(5116), 1903–1904.

    Article  CAS  PubMed  Google Scholar 

  • Agashe, V. R., et al. (2004). Function of trigger factor and DnaK in multidomain protein folding. Cell, 117(2), 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Akerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nature Reviews. Molecular Cell Biology, 11(8), 545–555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali, M. M. U., et al. (2006). Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature, 440(7087), 1013–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri, D. C., et al. (2012). TRAP-1, the mitochondrial Hsp90. Biochimica et Biophysica Acta-Molecular Cell Research, 1823(3), 767–773.

    Article  CAS  Google Scholar 

  • Amin, J., Ananthan, J., & Voellmy, R. (1988). Key features of heat shock regulatory elements. Molecular and Cellular Biology, 8(9), 3761–3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta - Proteins & Proteomics, 1854(4), 291–319.

    Article  CAS  Google Scholar 

  • Balch, W. E., et al. (2008). Adapting proteostasis for disease intervention. Science, 319(5865), 916–919.

    Article  CAS  PubMed  Google Scholar 

  • Baler, R., Welch, W. J., & Voellmy, R. (1992). Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. The Journal of Cell Biology, 117(6), 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  • Baler, R., Dahl, G., & Voellmy, R. (1993). Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Molecular and Cellular Biology, 13(4), 2486–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann, F., Milisav, I., Neupert, W., & Herrmann, J. M. (2000). Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces Cerevisiae. FEBS Letters, 487(2), 307–312.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, B. (1999). Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 18(24), 6927–6933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergerat, A., et al. (1997). An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 386, 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj, S., Ali, A., & Ovsenek, N. (1999). Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Molecular and Cellular Biology, 19(12), 8033–8041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, S., et al. (1996). Chaperone function of Hsp90-associated proteins. Science, 274(5293), 1715–1717.

    Article  CAS  PubMed  Google Scholar 

  • Boston, R. S., Viitanen, P. V., & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32(1), 191–222.

    Article  CAS  PubMed  Google Scholar 

  • Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & andSigler, P. B. (1994). The crystal structure of bacterial chaperonin GroEL at 2.8Ao. Nature, 371(6498), 578–586.

    Article  CAS  PubMed  Google Scholar 

  • Braig, K., Adams, P. D., & Brunger, A. T. (1995). Conformational variability in the refined structure of the chaperonin GroEL at 2.8Ao resolution. Nature Structural and Molecular Biology, 2(12), 1083–1094.

    Article  CAS  Google Scholar 

  • Brodsky, J. L., Goeckeler, J., & Schekman, R. (1995). BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proceedings of the National Academy of Sciences, 92(21), 9643–9646.

    Article  CAS  Google Scholar 

  • Brychzy, A., et al. (2003). Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. The EMBO Journal, 22(14), 3613–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchberger, A., Bukau, B., & Sommer, T. (2010). Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in arms. Molecular Cell, 40(2), 238–252.

    Article  CAS  PubMed  Google Scholar 

  • Bukau, B. (1993). Regulation of the Escherichia Coli heat-shock response. Molecular Microbiology, 9(4), 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Burton, B. M., & Baker, T. A. (2005). Remodeling protein complexes: Insights from the AAA+ unfoldase ClpX and mu transposase. Protein Science, 14(8), 1945–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrascosa, L., Muga, A., & Valpuesta, M. (1998). GroEL under Heat-Shock. The Journal of Biological Chemistry, 273(49), 32587–32594.

    Article  PubMed  Google Scholar 

  • Chalovich, J. M., & Eisenberg, E. (2012). A proteomic screen identified stress-induced chaperone proteins as targets of Akt phosphorylation in Mesangial cells. Biophysical Chemistry, 257(5), 2432–2437.

    Google Scholar 

  • Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284.

    Article  CAS  PubMed  Google Scholar 

  • Chaston, J. J., et al. (2016). Structural and functional insights into the evolution and stress adaptation of type II Chaperonins. Structure, 24(3), 364–374.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri, T. K., Farr, G. W., Fenton, W. A., Rospert, S., & Horwich, A. L. (2001). GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell, 107(2), 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., & Smith, D. F. (1998). Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. The Journal of Biological Chemistry, 273(52), 35194–35200.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., et al. (1990). Accumulation, stability, and localization of a major chloroplast heat-shock protein. The Journal of Cell Biology, 110(6), 1873–1883.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. F., et al. (1996). A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Molecular and Cellular Biology, 16(9), 4691–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., et al. (1998). Differential interactions of p23 and the TPR-containing proteins hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress & Chaperones, 3(2), 118–129.

    Article  CAS  Google Scholar 

  • Cheng, M. Y., et al. (1989). Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 337(6208), 620–625.

    Article  CAS  PubMed  Google Scholar 

  • Cintron, N. S., & Toft, D. (2006). Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. The Journal of Biological Chemistry, 281(36), 26235–26244.

    Article  CAS  PubMed  Google Scholar 

  • Cotto, J., Kline, M., & Morimoto, R. I. (1996). Activation of heat shock factor 1 DNA binding precedes stress- induced serine phosphorylation. The Journal of Biological Chemistry, 271(7), 3355–3358.

    Article  CAS  PubMed  Google Scholar 

  • Cox, J. S., & Walter, P. (1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 87(3), 391–404.

    Article  CAS  PubMed  Google Scholar 

  • Cox, M. B., et al. (2007). FK506-binding protein 52 phosphorylation: A potential mechanism for regulating steroid hormone receptor activity. Molecular Endocrinology, 21(12), 2956–2967.

    Article  CAS  PubMed  Google Scholar 

  • Csermely, P., et al. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79(2), 129–168.

    Article  CAS  Google Scholar 

  • Cunningham, C. N., et al. (2012). The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Protein Science, 21, 1162–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya, V., & Chaudhuri, T. K. (2014). GroEL/ES accelerates the refolding of a multi-domain protein through modulating on pathway intermediates. The Journal of Biological Chemistry, 289(1), 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Daniels, R., et al. (2003). N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Molecular Cell, 11(1), 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Das, A. K., et al. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. The EMBO Journal, 17(5), 1192–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditzel, L., Lowe, J., Stock, D., Stetter, K. O., Huber, H., Huber, R., & Steinbacher, S. (1998). Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 93(1), 125–138.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty, J., et al. (1987). Identification of the 90Kda substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochimica et Biophysica Acta, 927, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, R. J. (2001). Macromolecular crowding: Obvious but underappreciated. Trends in Biochemical Sciences, 26(10), 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, R. J., & van der Vies, S. M. (1991). Molecular Chaperones. Annual Review of Biochemistry, 60(1), 321–347.

    Article  CAS  PubMed  Google Scholar 

  • Ewalt, K. L., Hendrick, J. P., Houry, W. A., & Hartl, F. U. (1997). In Vivo observation of polypeptide flux through the bacterial chaperonin system. Cell, 90(3), 491–500.

    Article  CAS  PubMed  Google Scholar 

  • Eyles, S. J., & Gierasch, L. M. (2010). Nature’s molecular sponges: Small heat shock proteins grow into their chaperone roles. Proceedings of the National Academy of Sciences, 107(7), 2727–2728.

    Article  CAS  Google Scholar 

  • Felts, S. J., et al. (2000). Protein structure and folding: The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties the hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. The Journal of Biological Chemistry, 275(5), 3305–3312.

    Article  CAS  PubMed  Google Scholar 

  • Ferbitz, L., et al. (2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 431(7008), 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Fenton, W. A., & Horwich, A. L. (1997). Review, GroEL mediated protein folding. Protein Science, 6, 743–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton, W. A., Kashi, Y., Furtak, K., & Horwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo, L., Klunker, D., Ang, D., Naylor, D. J., Kerner, M. J., Georgopoulos, C., Hartl, F. U., & Hayer-Hartl, M. (2004). Functional characterization of an archaeal GroEL/GroES chaperonin system: Significance of substrate encapsulation. The Journal of Biological Chemistry, 279(2), 1090–1099.

    Article  CAS  PubMed  Google Scholar 

  • Fiorenza, M. T., et al. (1995). Complex expression of murine heat shock transcription factors. Nucleic Acids Research, 23(3), 467–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forouzan, D., Ammelburg, M., Hobel, C. F., Ströh, L. J., Sessler, N., Martin, J., & Lupas, A. N. (2012). The archaeal proteasome is regulated by a network of AAA ATPases. The Journal of Biological Chemistry, 287(46), 39254–39262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck, E., et al. (2004). Evolutionary diversity of vertebrate small heat shock proteins. Journal of Molecular Evolution, 59(6), 792–805.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, B. C., & Morimoto, R. I. (1996). The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. The EMBO Journal, 15(12), 2969–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman, B. C., et al. (1995). Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. The EMBO Journal, 14(10), 2281–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman, B. C., Toft, D. O., & Morimoto, R. I. (1996). Molecular chaperone machines: Chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science, 274, 1718–1720.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, B. C., et al. (2000). The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes and Development, 14(4), 422–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frydman, J. (2001). Folding of newly translated proteins in vivo: The role of molecular chaperones. Annual Review of Biochemistry, 70, 603–647.

    Article  CAS  PubMed  Google Scholar 

  • Fulda, S., et al. (2010). Cellular stress responses: Cell survival and cell death. Int J Cell Biol, 2010(2010), 1–23.

    Google Scholar 

  • Gaiser, A. M., Kretzschmar, A., & Richter, K. (2010). Cdc37-Hsp90 complexes are responsive to nucleotide-induced conformational changes and binding of further cofactors. The Journal of Biological Chemistry, 285(52), 40921–40932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos, C., Liberek, K., Zylicz, M., & Ang, D. (1994). Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. Biol Heat Shock Prot Mol Chaperones, 209–249.

    Google Scholar 

  • Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Golbik, R., Zahn, R., Harding, S. E., & Alan, F. R. (1998). Thermodynamic stability and folding of GroEL minichaperones. Journal of Molecular Biology, 276, 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff, P., Gatenby, A. A., & Lorimer, G. H. (1989). GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 337(6202), 44–47.

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff, P., et al. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences, 96(24), 13732–13737.

    Article  CAS  Google Scholar 

  • Grallert, H., Rutkat, K., & Buchner, J. (1998). GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. The Journal of Biological Chemistry, 273(50), 33305–33310.

    Article  CAS  PubMed  Google Scholar 

  • Graner, M. W., Lillehei, K. O., & Katsanis, E. (2014). Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Frontiers in Oncology, 4(379), 1–12.

    Google Scholar 

  • Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305(5684), 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Gromiha, M. M., & Selvaraj, S. (2004). Inter-residue interactions in protein folding and stability. Progress in Biophysics and Molecular Biology, 86(2), 235–277.

    Article  CAS  PubMed  Google Scholar 

  • Gross, C. A. (1996). Function and regulation of the heat shock proteins in Escherichia coli and Salmonella cellular and molecular biology. American Society for Microbiology, 1382–1399.

    Google Scholar 

  • Guisbert, E., Herman, C., Lu, C. Z., & Gross, C. A. (2004). A chaperone network controls the heat shock response in E. Coli. Genes & Development, 18(22), 2812–2821.

    Article  CAS  Google Scholar 

  • Guo, Y., et al. (2001). Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. The Journal of Biological Chemistry, 276(49), 45791–45799.

    Article  CAS  PubMed  Google Scholar 

  • Guy, C. L., & Li, Q.-B. (1998). The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell, 10(4), 539–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381(6583), 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F. U., Bracher, A., & Hartl, M. H. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295(5561), 1852–1858.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., & Buchner, J. (1999). Hsp26: A temperature-regulated chaperone. The EMBO Journal, 18(23), 6744–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkauf, S., & Buchner, J. (2004a). Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO Journal, 23(3), 638–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck, M., Ignatiou, A., Saibil, H., Helmich, S., Frenzl, E., Stromer, T., & Buchner, J. (2004b). A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. Journal of Molecular Biology, 343(2), 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Hartl, M., Bracher, A., & Hartl, F. U. (2016). The GroEL-GroES chaperonin machine: A nano-cage for protein folding. Trends in Biochemical Sciences, 41(1), 62–76.

    Article  CAS  PubMed  Google Scholar 

  • Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73, 1019–1049.

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen, S. M., et al. (1988). Homologous plant and bacterial protein chaperone oligomeric protein assembly. Nature, 333, 330–334.

    Article  CAS  PubMed  Google Scholar 

  • Hendrick, J. P., & Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62(1), 349–384.

    Article  CAS  PubMed  Google Scholar 

  • Herman, C., & Gross, C. A. (2000). Heat stress. In J. Lederberg (Ed.), Encyclopedia of microbiology (pp. 598–606). Academic Press.

    Google Scholar 

  • Hessling, M., Richter, K., & Buchner, J. (2009). Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Structural & Molecular Biology, 16(3), 287–293.

    Article  CAS  Google Scholar 

  • Hietakangas, V., & Sistonen, L. (2006). Regulation of the heat shock response by heat shock transcription factors. Chaperones, 1–34.

    Google Scholar 

  • Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and Proteotoxicity. Cell, 66(2), 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J. E., & Hemmingsen, S. M. (2001). Arabidopsis Thaliana type I and II chaperonins. Cell Stress and Chaperones, 6(3), 190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two families of chaperonin: Physiology and mechanism. Annual Review of Cell and Developmental Biology, 23, 115–145.

    Article  CAS  PubMed  Google Scholar 

  • Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N., & Furtak, K. (1993). Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL. Cell, 74(5), 909–917.

    Article  CAS  PubMed  Google Scholar 

  • Hundley, H. A. (2005). Human Mpp11 J protein: Ribosome-tethered molecular chaperones are ubiquitous. Science, 308(5724), 1032–1034.

    Article  CAS  PubMed  Google Scholar 

  • Imai, J., & Yahara, I. (2000). Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Molecular and Cellular Biology, 20(24), 9262–9270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob, U., Gaestel, M., Engel, K., & Buchner, J. (1993). Small heat shock proteins are molecular chaperones. The Journal of Biological Chemistry, 268(3), 1517–1520.

    CAS  PubMed  Google Scholar 

  • Janowsky, B., Major, T., Knapp, K., & Voos, W. (2006). The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. Journal of Molecular Biology, 357(3), 793–807.

    Article  CAS  Google Scholar 

  • Johnson, J. L., & Toft, D. O. (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. The Journal of Biological Chemistry, 269(40), 24989–24993.

    CAS  PubMed  Google Scholar 

  • Johnson, J. L., & Toft, D. O. (1995). Binding of p23 and hsp90 during assembly with the progesterone receptor. Molecular Endocrinology, 9(6), 670–678.

    CAS  PubMed  Google Scholar 

  • Johnson, J. L., et al. (1994). Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Molecular and Cellular Biology, 14(3), 1956–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, B. D., et al. (1998). Hop modulates hsp70 / hsp90 interactions in protein folding. The Journal of Biological Chemistry, 273(6), 3679–3686.

    Article  CAS  PubMed  Google Scholar 

  • Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology, 11(8), 579–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, B. H., et al. (2007). Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell, 131(2), 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Kappé, G., et al. (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress and Chaperones, 8(1), 53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley, P. M., & Schlesinger, M. J. (1982). Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Molecular and Cellular Biology, 2(3), 267–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp, M., Baumeister, W., & Essen, L. O. (1997). Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell, 91(2), 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Kourtis, N., & Tavernarakis, N. (2011). Cellular stress response pathways and ageing: Intricate molecular relationships. The EMBO Journal, 30(13), 2520–2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer, G., Boehringer, D., Ban, N., & Bukau, B. (2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural & Molecular Biology, 16(6), 589–597.

    Article  CAS  Google Scholar 

  • Kriehuber, T., et al. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. The FASEB Journal, 24(10), 3633–3642.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, P., & Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis Thaliana. Cell Stress and Chaperones, 6(3), 238–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kültz, D. (2004). Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67(1), 225–257.

    Article  CAS  Google Scholar 

  • Langer, T., et al. (1992). Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356(6371), 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Lee, U., et al. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. The Plant Journal, 49(1), 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Lees-Miller, S. P., & Anderson, C. W. (1989). Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. The Journal of Biological Chemistry, 264(5), 2431–2437.

    CAS  PubMed  Google Scholar 

  • Leitner, A., Joachimiak, L. A., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B., Pechmann, S., Holmes, S., Cong, Y., & Ma, B. (2012). The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure, 20(5), 814–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leskovar, A., et al. (2008). The ATPase cycle of the mitochondrial Hsp90 analog trap1. The Journal of Biological Chemistry, 283(17), 11677–11688.

    Article  CAS  PubMed  Google Scholar 

  • Levy-Rimler, G., et al. (2002). Type I chaperonins: Not all are created equal. FEBS Letters, 529(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Richter, K., & Buchner, J. (2011). Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nature Structural and Molecular Biology, 18(1), 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Soroka, J., & Buchner, J. (2012). The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta – Molecular Cell Research, 1823(3), 624–635.

    Article  CAS  Google Scholar 

  • Liberek, K., Galitski, T. P., Zylicz, M., & Georgopoulos, C. (1992). The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proceedings of the National Academy of Sciences, 89, 3516–3520.

    Article  CAS  Google Scholar 

  • Lin, Z., & Rye, H. S. (2006). GroEL mediated protein folding: Making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, B. L., et al. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis Thaliana. Cell Stress and Chaperones, 6(3), 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55(1), 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22(1), 631–677.

    Article  CAS  PubMed  Google Scholar 

  • Lizuka, R., & Funatsu, T. (2016). Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophy and Physicobiol, 13, 63–69.

    Article  Google Scholar 

  • Llorca, O., Galán, A., Carrascosa, J. L., Muga, A., & Valpuesta, J. M. (1998). GroEL under heat-shock. Journal of Biological Chemistry, 273(49), 32587–32594.

    Article  CAS  Google Scholar 

  • Lopez, T., Dalton, K., & Frydman, J. (2016). The mechanism and function of group II chaperonins. Journal of Molecular Biology, 427(18), 2919–2930.

    Article  CAS  Google Scholar 

  • Lyman, S. K., & Schekman, R. (1995). Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces Cerevisiae. The Journal of Cell Biology, 131(5), 1163–1171.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., & Hendershot, L. M. (2004). ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy, 28(1–2), 51–65.

    Article  CAS  PubMed  Google Scholar 

  • MacLean, M., & Picard, D. (2003). Cdc37 goes beyond Hsp90 and kinases. Cell Stress & Chaperones, 8(2), 114–119.

    Article  CAS  Google Scholar 

  • Mani, N., et al. (2016). Multiple oligomeric structures of a bacterial small heat shock protein. Scientific Reports, 6, 1–12.

    Article  CAS  Google Scholar 

  • Martinez-Hackert, E., & Hendrickson, W. A. (2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell, 138(5), 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, T., Suzuki, R., & Furutani, M. (2004). Archaeal peptidylprolyl cis-trans isomerases (PPIases) update. Frontiers in Bioscience, 9, 1680–1700.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M. P. (2010). Gymnastics of molecular chaperones. Molecular Cell, 39(3), 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M. P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., & Bukau, B. (2000). Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology, 7, 586–593.

    Article  PubMed  CAS  Google Scholar 

  • McClellan, A. J., et al. (2007). Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell, 131(1), 121–135.

    Article  CAS  PubMed  Google Scholar 

  • McCracken, A. A., & Brodsky, J. L. (1996). Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. The Journal of Cell Biology, 132(3), 291–298.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, S. H., et al. (2006). The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. Journal of Molecular Biology, 356(3), 746–758.

    Article  CAS  PubMed  Google Scholar 

  • Merz, F., et al. (2008). Molecular mechanism and structure of trigger factor bound to the translating ribosome. The EMBO Journal, 27(11), 1622–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, A. S., et al. (2003a). Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell, 113(3), 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, P., et al. (2003b). Structural and functional analysis of the middle segment of Hsp90: Implications for ATP hydrolysis and client protein and Cochaperone interactions. Molecular Cell, 11, 647–658.

    Article  CAS  PubMed  Google Scholar 

  • Mickler, M., et al. (2009). The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nature Structural and Molecular Biology, 16(3), 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Miemyk, J. (2017). The 70 kDa stress-related proteins as molecular chaperones. Trends in Plant Science, 2(5), 180–187.

    Article  Google Scholar 

  • Minami, Y., & Minami, M. (1999). Hsc70/Hsp40 chaperone system mediates the Hsp90-dependent refolding of firefly luciferase. Genes to Cells, 4(12), 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Morange, M., & Bensaude, O. (1991). Heat shock increases turnover of 90 groups in HeLa cells. Intl J Biol Stress, l(2), 359–362.

    Google Scholar 

  • Morimoto, R. I., Tissieres, A., & Georgopoulos, C. (1994). Progress and perspectives on the biology of heat shock proteins and molecular chaperones. Biol Heat Shock Prot Mol Chaperones, 1–30.

    Google Scholar 

  • Morimoto, R. I., Kroeger, P. E., & Cotto, J. J. (1996). The transcriptional regulation of heat shock genes: A plethora of heat shock factors and regulatory conditions. In U. Feige et al. (Eds.), Stress-Inducible Cellular Responses (Vol. 77, pp. 139–163). Basel: Birkhäuser Basel EXS.

    Chapter  Google Scholar 

  • Muchowski, P. J., et al. (1999). ATP and the core “alpha-Crystallin” domain of the small heat-shock protein alphaB-crystallin. The Journal of Biological Chemistry, 274(42), 30190–30195.

    Article  CAS  PubMed  Google Scholar 

  • Mujacic, M., Bader, M. W., & Baneyx, F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Molecular Microbiology, 51, 849–859.

    Article  CAS  PubMed  Google Scholar 

  • Nair, S. C., et al. (1997). Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Molecular and Cellular Biology, 17(2), 594–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa, S., & Endo, T. (1997). The yeast Jem1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. The Journal of Biological Chemistry, 272(20), 12889–12892.

    Article  CAS  PubMed  Google Scholar 

  • Normington, K., Kohno, K., Kozutsumi, Y., Gething, M. J., & Sambrook, J. (1989). S. Cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell, 57(7), 1223–1236.

    Article  CAS  PubMed  Google Scholar 

  • Obermann, W. M. J., et al. (1998). In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. The Journal of Cell Biology, 143(4), 901–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto, H., et al. (2005). The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proceedings of the National Academy of Sciences, 102(29), 10064–10069.

    Article  CAS  Google Scholar 

  • Panaretou, B., et al. (1998). ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. The EMBO Journal, 17(16), 4829–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaretou, B., et al. (2002). Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Molecular Cell, 10(6), 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  • Patricia Hernández, M., Chadli, A., & Toft, D. O. (2002). HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. The Journal of Biological Chemistry, 277(14), 11873–11881.

    Article  PubMed  CAS  Google Scholar 

  • Paul, S., Singh, C., Mishra, S., & Chaudhuri, T. K. (2007). The 69-kDa Escherichia Coli Maltodextrin Glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES assisted folding. The FASEB Journal, 21(11), 2874–2885.

    Article  CAS  PubMed  Google Scholar 

  • Pearl, L. H. (2016). Review: The HSP90 molecular chaperone - an enigmatic ATPase. Biopolymers, 105(8), 594–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl, L. H., & Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 75(1), 271–294.

    Article  CAS  PubMed  Google Scholar 

  • Pelham, H. R. B. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46(7), 959–961.

    Article  CAS  PubMed  Google Scholar 

  • Pellecchia, M., Montgomery, D. L., Stevens, S. Y., Vander Kooi, C. W., Feng, H., Gierasch, L. M., & Zuiderweg, E. R. P. (2000). Structural insights into substrate binding by the molecular chaperone DnaK. Nature Structural Biology, 7, 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala, L., Nykänen, P., & Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15(7), 1118–1131.

    Article  CAS  PubMed  Google Scholar 

  • Pirkl, F., & Buchner, J. (2001). Functional analysis of the Hsp90-associated human peptidylprolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. Journal of Molecular Biology, 308(4), 795–806.

    Article  CAS  PubMed  Google Scholar 

  • Prändl, R., et al. (1998). HSF3, a new heat shock factor from Arabidopsis Thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Molecular & General Genetics, 258(3), 269–278.

    Article  Google Scholar 

  • Prodromou, C., et al. (1999). Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. The EMBO Journal, 18(3), 754–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou, C., et al. (2000). The ATPase cycle of Hsp90 drives a molecular ` clamp via transient dimerization of the N-terminal domains. The EMBO Journal, 19(16), 4383–4392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri, S., & Chaudhuri, T. K. (2017). Folding and unfolding pathway of chaperonin GroEL monomer and elucidation of thermodynamic parameters. International Journal of Biological Macromolecules, 96, 713–726.

    Article  CAS  PubMed  Google Scholar 

  • Rajaraman, K., et al. (2001). Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Letters, 497(2–3), 118–123.

    Article  CAS  PubMed  Google Scholar 

  • Rani, S., Srivastava, A., Kumar, M., & Goel, M. (2016). CrAgDb - a database of annotated chaperone repertoire in archaeal genomes. FEMS Microbiology Letters, 363(6), 1–6.

    Article  Google Scholar 

  • Ranson, N. A., Dunster, N. J., Burston, S. G., & Clarke, A. R. (1995). Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. Journal of Molecular Biology, 250(5), 581–586.

    Article  CAS  PubMed  Google Scholar 

  • Ratzke, C., et al. (2010). Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proceedings of the National Academy of Sciences, 107(37), 16101–16106.

    Article  CAS  Google Scholar 

  • Ray, D., et al. (2016). Plant stress response: Hsp70 in the spotlight. In A. A. A. Asea, P. Kaur, & S. K. Calderwood (Eds.), Heat shock Prot plants, Heat shock proteins (Vol. 10, pp. 123–147). Cham: Springer.

    Chapter  Google Scholar 

  • Retzlaff, M., et al. (2010). Asymmetric activation of the Hsp90 dimer by its Cochaperone Aha1. Molecular Cell, 37(3), 344–354.

    Article  CAS  PubMed  Google Scholar 

  • Rice, L. M., et al. (2008). Article multiple conformations of E .coli Hsp90 in solution : Insights into the conformational dynamics of Hsp90. Structure, 16(5), 755–765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richter, K., Walter, S., & Buchner, J. (2004). The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. Journal of Molecular Biology, 342(5), 1403–1413.

    Article  CAS  PubMed  Google Scholar 

  • Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the verge of death. Molecular Cell, 40(2), 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Ritossa, F. (1996). Discovery of the heat shock response. Cell Stress and Chaperones, 1(2), 97–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe, S. M., et al. (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics Radicicol and Geldanamycin. Journal of Medicinal Chemistry, 42(2), 260–266.

    Article  CAS  PubMed  Google Scholar 

  • Roe, S. M., et al. (2004). The mechanism of Hsp90 regulation by the protein kinase-specific Cochaperone p50cdc37. Cell, 116(1), 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barreil, B., & Neupertt, W. (1994). Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell, 77(2), 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Rudiger, S., Buchberger, A., & Bukau, B. (1997). Interaction of Hsp70 chaperones with substrates. Nature, 4(5), 686–689.

    Google Scholar 

  • Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J., & Silver, P. (1989). A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. The Journal of Cell Biology, 109(6), 2665–2675.

    Article  CAS  PubMed  Google Scholar 

  • Sakikawa, C., Taguchi, H., Makino, Y., & Yoshida, M. (1999). On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. Journal of Biological Chemistry, 274(30), 21251–21256.

    Article  CAS  Google Scholar 

  • Santoro, N., Johansson, N., & Thiele, D. J. (1998). Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heats hock transcription factor. Molecular and Cellular Biology, 18(11), 6340–6352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge, K. D., Murphy, S. P., & Morimoto, R. I. (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Molecular and Cellular Biology, 13(3), 1392–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, N. K., Kundnani, P. and Grover, A. (2013). Functional analysis of Hsp70 superfamily proteins of rice (Oryza Sativa). Cell Stress Chaperones. Dordrecht: Springer Netherlands 18 (4), pp. 427–437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences, 97(20), 10832–10837.

    Article  CAS  Google Scholar 

  • Scherrer, C., et al. (1990). Structural and functional reconstitution of the glucorcorticoid receptor- Hsp90 complex. The Journal of Biological Chemistry, 265(35), 21397–21400.

    CAS  PubMed  Google Scholar 

  • Scheufler, C., et al. (2000). Structure of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell, 101(2), 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Schirmer, E. C., Glover, J. R., Singer, M. A., & Lindquist, S. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences, 21(8), 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Schlenstedt, G., Harris, S., Risse, B., Lill, R., & Silver, P. A. (1995). A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/ Kar2p via a conserved domain that specifies interactions with Hsp70s. The Journal of Cell Biology, 129(4), 979–988.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, M., Neupert, W., & Langer, T. (1995). Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. The EMBO Journal, 14(14), 3434–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster, G., et al. (1988). Evidence for protection by heat-shock proteins against photoinhibition during heat-shock. The EMBO Journal, 7(1), 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scroggins, B. T., & Neckers, L. (2007). Post-translational modification of heat-shock protein 90: Impact on chaperone function. Expert Opinion on Drug Discovery, 2(10), 1403–1414.

    Article  CAS  PubMed  Google Scholar 

  • Sefton, B. M., Beemon, K., & Hunter, T. (1978). Comparison of the expression of the src gene of Rous sarcoma virus in vitro and in vivo. Journal of Virology, 28(3), 957–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, M., & Goldberg, A. L. (1994). Heat shock induced phosphorylation of GroEL alters its binding and dissociation from unfolded protein. The Journal of Biological Chemistry, 269(50), 31479–31483.

    CAS  PubMed  Google Scholar 

  • Shi, Y., Mosser, D. D., & Morimoto, R. I. (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes and Development, 12(5), 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sichting, M., Mokranjac, D., Azem, A., Neupert, W., & Hell, K. (2005). Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. The EMBO Journal, 24(5), 1046–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegert, R., et al. (2000). Structure of the molecular chaperone Prefoldin. Cell, 103(4), 621–632.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein, S., Schlenstedt, G., Silver, P. A., & Gilmore, R. (1998). A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. The Journal of Cell Biology, 143(4), 921–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siligardi, G., et al. (2002). Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50 cdc37. The Journal of Biological Chemistry, 277(23), 20151–20159.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein, A. M., et al. (1997). Protein phosphatase 5 is a major component of glucocorticoid receptor°hsp90 complexes with properties of an FK506-binding immunophilin. The Journal of Biological Chemistry, 272(26), 16224–16230.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. F. (1993). Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Molecular Endocrinology, 7(11), 1418–1429.

    CAS  PubMed  Google Scholar 

  • Smith, et al. (1999). Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proceedings of the National Academy of Sciences, 96, 6678–6682.

    Article  CAS  Google Scholar 

  • Smith, B. J., & Yaffe, M. P. (1991). A mutation in the yeast heat-shock factor gene causes temperature sensitive defects in both mitochondrial protein import and the cell cycle. Molecular and Cellular Biology, 11(5), 2647–2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, D. F., et al. (1992). Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. The Journal of Biological Chemistry, 267(2), 1350–1356.

    CAS  PubMed  Google Scholar 

  • Spiess, C., et al. (2004). Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets. Trends in Cell Biology, 14(11), 598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins, C. E., et al. (1997). Crystal structure of an Hsp90 – Geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell, 89(2), 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Stromer, T., Fischer, E., Richter, K., Haslbeck, M., & Buchner, J. (2004). Analysis of the regulation of the molecular chaperone Hsp26 by temperature- induced dissociation: The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. The Journal of Biological Chemistry, 279(12), 11222–11228.

    Article  CAS  PubMed  Google Scholar 

  • Sun, W., et al. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 27(5), 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. P., & Benjamin, I. J. (2005). Small heat shock proteins: A new classification scheme in mammals. Journal of Molecular and Cellular Cardiology, 38(3), 433–444.

    Article  CAS  PubMed  Google Scholar 

  • Teter, S. A., et al. (1999). Polypeptide flux through bacterial Hsp70. Cell, 97(6), 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. G., & Baneyx, F. (2000). ClpB and HtpG facilitate de novo protein folding in stressed Escherichia Coli cells. Molecular Microbiology, 36(6), 1360–1370.

    Article  CAS  PubMed  Google Scholar 

  • Thulasiraman, V., Yang, C., & Frydman, J. (1999). In vivo newly translated polypeptides are sequestered in a protected folding environment. The EMBO Journal, 18(1), 85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissiéres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila Melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84(3), 389–398.

    Article  PubMed  Google Scholar 

  • Trachootham, D., et al. (2008). Redox regulation of cell survival. Antioxidants and Redox Signaling, 10(8), 1343–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vabulas, R. M., et al. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology, 1–18.

    Google Scholar 

  • Vainberg, I. E., et al. (1998). Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell, 93(5), 863–873.

    Article  CAS  PubMed  Google Scholar 

  • Vanghele, M., & Ganea, E. (2010). The role of bacterial molecular chaperones in pathogen survival within the host. Rom. Journal of Biochemistry, 47(1), 87–100.

    Google Scholar 

  • Wagner, I., Arlt, H., van Dyck, L., Langer, T., & Neupert, W. (1994). Molecular chaperones cooperate with PIM1 protease in the degradation of mis- folded proteins in mitochondria. The EMBO Journal, 13(21), 5135–5145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmann, T., et al. (1995). The Thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic Chaperonin TRiC. European Journal of Biochemistry, 227(3), 848–856.

    Article  CAS  PubMed  Google Scholar 

  • Walker, A. I., et al. (1985). Double-stranded DNA induces the phosphorylation of several proteins including the 90000 mol. Wt. heat-shock protein in animal cell extracts. The EMBO Journal, 4(1), 139–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandinger, S. K., et al. (2006). The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. The EMBO Journal, 25(2), 367–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., et al. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Wegele, H., Müller, L. and Buchner, J. (2004). Hsp70 and Hsp90—a relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology, Springer, Berlin, Heidelberg 151, pp. 1–44.

    Google Scholar 

  • Weissman, J. S., et al. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell, 83(4), 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Welker, S., Rudolph, B., Frenzel, E., Hagn, F., Liebisch, G., Schmitz, G., Scheuring, J., Kerth, A., Blume, A., Weinkauf, S., Haslbeck, M., Kessler, H., & Buchner, J. (2010). Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell, 39(4), 507–520.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, K., et al. (2007). Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis Thaliana. The Journal of Biological Chemistry, 282(52), 37794–37804.

    Article  CAS  PubMed  Google Scholar 

  • Yang, D., Yea, X., & Lorimer, G. H. (2013). Symmetric GroEL: GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proceedings of the National Academy of Sciences, 110(46), 4298–4305.

    Article  CAS  Google Scholar 

  • Young, J. C., Moarefi, I., & Hartl, F. U. (2001). Hsp90. The Journal of Cell Biology, 154(2), 267–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, J. C., Barral, J. M., & Hartl, F. U. (2003). More than folding: Localized functions of cytosolic chaperones. Trends in Biochemical Sciences, 28(10), 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Yu, A., et al. (2015). Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Res Intl, 2015(2015), 1–8.

    Google Scholar 

  • Zhang, W., et al. (2004). Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Journal of Molecular Biology, 340(4), 891–907.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, R., et al. (2005). Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell, 120(5), 715–727.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, R., & Houry, W. A. (2007). Molecular interaction network of the Hsp90 chaperone system, BT - molecular aspects of the stress response: Chaperones, membranes and networks. In P. Csermely & L. Vígh (Eds.), (pp. 27–36). NY: Springer.

    Google Scholar 

  • Zhu, X., et al. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272(5268), 1606–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, J., et al. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94(4), 471–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance from IIT Delhi and infrastructural facility from IIT Delhi, India. AS and AP acknowledge financial assistance from CSIR, Government of India for providing fellowships in their doctoral course programme. SP acknowledge financial assistance from UGC, Government of India for providing fellowships in their doctoral course programme. BKC acknowledges IIT Delhi for providing fellowship in the doctoral course program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Chaudhuri .

Editor information

Editors and Affiliations

Additional information

Bhaskar K. Chatterjee, Sarita Puri, Ashima Sharma, and Ashutosh Pastor authors are equally contributed.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, B.K., Puri, S., Sharma, A., Pastor, A., Chaudhuri, T.K. (2018). Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_8

Download citation

Publish with us

Policies and ethics