Skip to main content

Heat Shock Protein 90: Truly Moonlighting!

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

Abstract

Hsp90 is an essential and abundantly expressed molecular chaperone in any living cell. The multiplicity of Hsp90 cellular functions is driven by its interaction with a broad range of partner proteins and thereby establishing itself as a moonlighting molecule. There are newer insights emerging to ascertain the cellular and physiological roles of Hsp90, such as (and not limited to) chromatin remodeling, gene regulation and developmental pathways. Hsp90 has been recognized as an important therapeutic target and has been linked to an increasing number of diseases, including cancer. Development of Hsp90 therapeutic reagents would be valuable research tools towards the maintenance of the proteome in health and disease. This review revisits the expression, structure-function, and clinical significance of the Hsp90 and its forms and reinforces its impact as a disease target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOA:

Anti-ovarian antibodies

GVBD:

Eggs, germinal vesicle breakdown oocyte

Hsp:

Heat shock proteins

IHC:

Immunohistochemistry

IVF-ET:

In vitro fertilization- embryo transfer

LC-MS:

Liquid chromatography/mass spectrometry

MALDI-TOF/TOF:

Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight

POF:

Premature ovarian failure

POI:

Primary ovarian insufficiency

References

  • Bardwell, J. C. A., & Craig, E. A. (1987). Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 84, 5177–5181.

    Article  CAS  Google Scholar 

  • Bensaude, O., & Morange, M. (1983). Spontaneous high expression of heat-shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. The EMBO Journal, 2, 173–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardillo, M. R., & Ippoliti, F. (2006). IL-6, IL-10 and HSP-90 expression in tissue microarrays from human prostate cancer assessed by computer-assisted image analysis. Anticancer Research, 26, 3409–3416.

    CAS  PubMed  Google Scholar 

  • Chadli, A., Graham, J. D., Abel, M. G., et al. (2006). GCUNC45 is a novel regulator for the progesterone receptor/Hsp90 chaperoning pathway. Molecular and Cellular Biology, 26(5), 1722–1730.

    Article  CAS  Google Scholar 

  • Chadli, A., Felts, S. J., & Toft, D. O. (2008). GCUNC45 is the first Hsp90 co-chaperone to show α/β isoform specificity. Journal of Biological Chemistry, 283(15), 9509–9512.

    Article  CAS  Google Scholar 

  • Choudhury, A., & Khole, V. V. (2013). Hsp90 antibodies: a detrimental factor responsible for ovarian dysfunction. American Journal of Reproductive Immunology, 70(5), 372–385.

    CAS  PubMed  Google Scholar 

  • Cornford, P. A., et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Research, 60, 7099–7105.

    CAS  PubMed  Google Scholar 

  • Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.

    Article  CAS  Google Scholar 

  • Elpek, G. O., Karaveli, S., Simsek, T., Keles, N., & Aksoy, N. H. (2003). Expression of heat-shock proteins Hsp27, Hsp70 and Hsp90 in malignant epithelial tumour of the ovaries. APMIS, 111, 523–530.

    Article  CAS  Google Scholar 

  • Falsone, F. S., Bernd, G., Florian, T., Anna-Maria, P., Andreas, J., & Kung, l. (2005). A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Letters, 579, 6350–6354.

    Article  CAS  Google Scholar 

  • Fecek, R. J., Simeng, W., & Walter, J. S. (2015). Immunotherapeutic targeting of Hsp90 client proteins in BRAF-inhibitor resistant melanoma. Journal for ImmunoTherapy of Cancer, 3(Suppl2), 432.

    Article  Google Scholar 

  • Gallucci, S., & Matzinger, P. (2001). Danger signals: SOS to the immune system. Current Opinion in Immunology, 13, 114–119.

    Article  CAS  Google Scholar 

  • Grad, I., Cederroth, C. R., Walicki, J., et al. (2010). The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One, 5(12), e15770.

    Article  CAS  Google Scholar 

  • Gruppi, C. M., Zakeri, Z. F., & Wolgemuth, D. J. (1991). Stage and lineage-regulated expression of two hsp90 transcripts during mouse germ cell differentiation and embryogenesis. Molecular Reproduction and Development, 28(3), 209–217.

    Article  CAS  Google Scholar 

  • Gupta, R. S. (1995). Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Molecular Biology and Evolution, 12, 1063–1073.

    CAS  PubMed  Google Scholar 

  • Hilscher, B., Hilscher, W., Bulthoff-Ohnolz, B., Kramer, U., Birke, A., Pelzer, H., & Gauss, G. (1974). Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell and Tissue Research, 154, 443–470.

    Article  CAS  Google Scholar 

  • Kajiwara, C., Kondo, S., Uda, S., et al. (2012). Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice. Biology Open, 1(10), 977–982.

    Article  CAS  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14(1), 105–111.

    Article  CAS  Google Scholar 

  • Karras, G. I., Song, Y., Sahni, N., Máté, F., Jenny, X., Marc, V., Alan, D., Luke, W., & Lindquist, S. (2017). Hsp90 shapes the consequences of human genetic variation. Cell, 168(5), 856–866.

    Article  CAS  Google Scholar 

  • Lele, Z., Hartson, S. D., Martin, C. C., Whitesell, L., Matts, R. L., & Krone, P. H. (1999). Developmental Biology, 210, 56–70.

    Article  CAS  Google Scholar 

  • Li, J., Soroka, J., & Buchner, J. (2012). The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1823(3), 624–635.

    Article  CAS  Google Scholar 

  • Li, K., Xue, Y., Chen, A., Jiang, Y., Xie, H., Shi, Q., et al. (2014). Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS One, 9(12), e115841.

    Article  Google Scholar 

  • Loones, M. T., Rallu, M., Mezger, V., & Morange, M. (1997). HSP gene expression and HSF2 in mouse development. Cellular and Molecular Life Sciences, 53, 179–190.

    Article  CAS  Google Scholar 

  • Mbofung, R. M., McKenzie, J. A., Malu, S., et al. (2017). Hsp90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nature Communications, 8, 451.

    Article  Google Scholar 

  • Millson, S. H., Truman, A. W., Racz, A., et al. (2007). Expressed as the sole Hsp90 of yeast, the α and β isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90β generates sensitivity to the Hsp90 inhibitor radicicol. The FEBS Journal, 274(7), 4453–4463.

    Article  CAS  Google Scholar 

  • Miyake, H., Muramaki, M., Kurahashi, T., Takenaka, A., & Fujisawa, M. (2010). Expression of potential molecular markers in prostate cancer: Correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urologic Oncology, 28, 145–151.

    Article  CAS  Google Scholar 

  • Morimoto, R. I. (1993). Cells in stress: Transcriptional activation of heat shock genes. Science, 259(5100), 1409–1410.

    Article  CAS  Google Scholar 

  • Pacey, S., et al. (2012). A phase II trial of 17-allylamino, 17-demethoxygeldanamycin [17-AAG, tanespimycin] in patients with metastatic melanoma. Investigational New Drugs, 30, 341–349.

    Article  CAS  Google Scholar 

  • Pick, E., et al. (2007). High Hsp90 expression is associated with decreased survival in breast cancer. Cancer Research, 67, 2932–2937.

    Article  CAS  Google Scholar 

  • Pires, E. S. (2010). Multiplicity of molecular and cellular targets in human ovarian autoimmunity an update. Journal of Assisted Reproduction and Genetics, 27, 519–524.

    Article  Google Scholar 

  • Pires, E. S. (2017). The Unmysterious roles of Hsp90: Ovarian pathology and autoantibodies. In D. MacPhee (Ed.), The Role of Heat Shock Proteins in Reproductive System Development and Function, Advances in Anatomy, Embryology and Cell Biology (Vol. 222, pp. 29–44). Springer.

    Chapter  Google Scholar 

  • Pires, E. S., & Khole, V. V. (2009a). A ‘block’ in the road to fertility: Autoantibodies to an immunodominant heat shock protein 90-beta in human ovarian autoimmunity. Fertility and Sterility, 92, 1395–1409.

    Article  CAS  Google Scholar 

  • Pires, E. S., & Khole, V. V. (2009b). Anti- ovarian antibodies: Specificity, prevalence, multipleantigenicity and significance in human ovarian autoimmunity. In Current Paradigm of Reprod Immunol (pp. 159–190). Trivandrum: Research signpost Trivandrum. ISBN: 978-81-308-0373-9.

    Google Scholar 

  • Pires, E. S., Parte, P. P., Meherji, P. K., Khan, S. A., & Khole, V. V. (2006). Naturally occurring anti-albumin antibodies are responsible for false positivity in diagnosis of autoimmune premature ovarian failure. The Journal of Histochemistry and Cytochemistry, 54(4), 397–405.

    Article  CAS  Google Scholar 

  • Pires, E. S., Meherji, P. K., Vaidya, R. R., Parikh, F. R., Ghosalkar, M. N., & Khole, V. V. (2007). Specific and sensitive immunoassays detect multiple anti-ovarian antibodies in women with infertility. The Journal of Histochemistry and Cytochemistry, 55(12), 1181–1190.

    Article  CAS  Google Scholar 

  • Pires, E. S., Choudhury, A. K., Idicula-Thomas, S., & Khole, V. V. (2011a). Anti-Hsp90 autoantibodies in sera of infertile women identify a dominant, conserved epitope EP6 (380–389) of Hsp90 beta protein. Reproductive Biology and Endocrinology, 9, 16.

    Article  CAS  Google Scholar 

  • Pires, E. S., Parikh, F. R., Mande, P. V., Uttamchandani, S. A., Savkar, S., & Khole, V. V. (2011b). Can anti-ovarian antibody testing be useful in an IVF-ET clinic? Journal of Assisted Reproduction and Genetics, 28(1), 55–64.

    Article  Google Scholar 

  • Pires, E. S., Hlavin, C., Macnamara, E., Ishola-Gbenla, K., Doerwaldt, C., Chamberlain, C., Klotz, K., Herr, A. K., Khole, A., Chertihin, O., Curnow, E., Feldman, S. H., Mandal, A., Shetty, J., Flickinger, C., & Herr, J. C. (2013). SAS1B protein [Ovastacin] shows temporal and spatial restriction to oocytes in several eutherian orders and initiates translation at the primary to secondary follicle transition. Developmental Dynamics, 242, 1405–1426.

    Article  CAS  Google Scholar 

  • Pires, E. S., D’Souza, R., Needham, M., Herr, A., Jazaeri, A., Li, H., Stoler, M., Anderson-Knapp, K., Thomas, T., Mandal, A., Gougeon, A., Flickinger, C., Bruns, D., Pollok, B., & Herr, J. C. (2015). Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors. Oncotarget, 6(30), 30194–30211.

    Article  Google Scholar 

  • Purandhar, K., Jena, P. K., Prajapati, B., Rajput, P., & Seshadri, S. (2014). Understanding the role of heat shock protein Isoforms in male fertility, Aging and Apoptosis. The World Journal of Men’s Health, 32(3), 123–132.

    Article  Google Scholar 

  • Röhl, A., Rohrberg, J., & Buchner, J. (2013). The chaperone Hsp90: Changing partners for demanding clients. Trends in Biochemical Sciences, 38(5), 253–262.

    Article  Google Scholar 

  • Schopf, H. F., Maximilian, M. B., & Johannes, B. (2017). The Hsp90 chaperone machinery. Nature Reviews Molecular Cell Biology, 18, 345–360.

    Article  CAS  Google Scholar 

  • Solit, D. B., et al. (2008). Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clinical Cancer Research, 14, 8302–8307.

    Article  CAS  Google Scholar 

  • Sreedhar, S. A., Kalmar, E., Csermely, P., & Shen, Y. F. (2004). Hsp90 isoforms: functions, expression and clinical importance. FEBS Letters, 562, 11–15.

    Article  Google Scholar 

  • Website: http://www.picard.ch/downloads/downloads.htm

    Google Scholar 

  • Website: https://www.genenames.org/cgi-bin/genefamilies/set/586

    Google Scholar 

  • Voss, A. K., Thomas, T., & Gruss, P. (2000). Development, 127, 1–11.

    CAS  PubMed  Google Scholar 

  • Witkin, S. S., Sultan, K. M., Neal, G. S., et al. (1994). Unsuspected Chlamydia trachomatis infections in the female genital tract and in vitro fertilization outcome. American Journal of Obstetrics and Gynecology, 171, 1208–1214.

    Article  CAS  Google Scholar 

  • Zuehlke, A., & Johnson, J. L. (2010). Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers, 93(3), 211–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would also like to place on record his gratitude to his Ph.D. mentor, the late Dr. Vrinda V Khole from the National Institute for Research in Reproductive Health (ICMR), Mumbai, India who mentored him during the course of his graduate degree. The author thanks the journal Fertility & Sterility for permitting reproduction of one figure from his previously published work [Fig. 12.4. Panel B2 and B5 of Pires ES and Khole VV. 2009: A ‘block’ in the road to fertility: autoantibodies to an immunodominant heat shock protein 90-beta in human ovarian autoimmunity. Fertility & Sterility 92:1395–1409]. Thank you to the journal of Reproductive Biology and Endocrinology for allowing him to reproduce one figure from his earlier work [Fig. 12.1a of Pires ES, Choudhury AK, Idicula-Thomas S, and Khole VV. Anti-Hsp90 autoantibodies in sera of infertile women identify a dominant, conserved epitope EP6 (380–389) of Hsp90 beta protein. Reprod Biol Endocrinol. 2011; 9: 16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eusebio S. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pires, E.S. (2018). Heat Shock Protein 90: Truly Moonlighting!. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_12

Download citation

Publish with us

Policies and ethics