Skip to main content

Hsp70: A Multi-Tasking Chaperone at the Crossroad of Cellular Proteostasis

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

  • 1017 Accesses

Abstract

Molecular chaperones are key components of protein quality control machineries in all biological systems. Members of Hsp70 group of molecular chaperones are one of the most commonly found chaperones that accomplish multitude of cellular activities in concert with its co-chaperones. Hsp70s are involved in almost all aspects of protein quality control starting from de novo protein folding, prevention of misfolded or aggregated protein formation to membrane translocation and degradation of terminally misfolded proteins. Barring few exceptions, all known Hsp70s accomplish cellular activities by consuming energies from ATP-hydrolysis by their ATPase activity. The ATP-hydrolysis-driven chaperoning activities of Hsp70s are always assisted and regulated by two groups of co-chaperones; J-domain proteins (JDPs) or Hsp40s and nucleotide exchange factors (NEFs), to accomplish cellular functions in physiological time frames. As the co-chaperones especially the JDPs outnumber the Hsp70s, it is thought that different co-chaperone networks actually bestow the multi-tasking ability to particular Hsp70. In this chapter, an overview of recent understanding of various cellular activities of Hsp70s assisted by its co-chaperones have been discussed to highlight the extent of diversity of cellular functions achieved by this group of molecular chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amm, I., Sommer, T., & Wolf, D. H. (2014). Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system. Biochimica et Biophysica Acta, 1843, 182–196.

    Article  CAS  PubMed  Google Scholar 

  • Arias, E., & Cuervo, A. M. (2011). Chaperone-mediated autophagy in protein quality control. Current Opinion in Cell Biology, 23, 184–189.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, R., Jayaraj, G. G., Peter, J. J., Kumar, V., & Mapa, K. (2016). Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. The FEBS Journal, 283, 2853–2868.

    Article  CAS  PubMed  Google Scholar 

  • Behnke, J., Feige, M. J., & Hendershot, L. M. (2015). BiP and its nucleotide exchange factors Grp170 and Sil1: Mechanisms of action and biological functions. Journal of Molecular Biology, 427, 1589–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertelsen, E.B., Chang, L., Gestwicki, J.E., Zuiderweg, E.R. (2009). Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proceedings of the National Academy of Sciences of the United States of America 106, 8471–8476.

    Article  CAS  Google Scholar 

  • Blamowska, M., Sichting, M., Mapa, K., Mokranjac, D., Neupert, W., & Hell, K. (2010). ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1. The Journal of Biological Chemistry, 285, 4423–4431.

    Article  CAS  PubMed  Google Scholar 

  • Blom, J., Kubrich, M., Rassow, J., et al. (1993). The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane. Molecular and Cellular Biology, 13, 7364–7371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolender, N., Sickmann, A., Wagner, R., Meisinger, C., & Pfanner, N. (2008). Multiple pathways for sorting mitochondrial precursor proteins. EMBO Reports, 9, 42–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracher, A., & Verghese, J. (2015). GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: Nucleotide exchange factors for Hsp70 molecular chaperones. Sub-Cellular Biochemistry, 78, 1–33.

    Article  CAS  PubMed  Google Scholar 

  • Casas, C. (2017). GRP78 at the Centre of the Stage in cancer and neuroprotection. Frontiers in Neuroscience, 11, 177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, Y. W., Sun, Y. J., Wang, C., & Hsiao, C. D. (2008). Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. The Journal of Biological Chemistry, 283, 15502–15511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover, A., & Kwon, Y. T. (2017). Protein quality control by molecular chaperones in neurodegeneration. Frontiers in Neuroscience, 11, 185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clerico, E. M., Tilitsky, J. M., Meng, W., & Gierasch, L. M. (2015). How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. Journal of Molecular Biology, 427, 1575–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conz, C., Otto, H., Peisker, K., et al. (2007). Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. The Journal of Biological Chemistry, 282, 33977–33984.

    Article  CAS  PubMed  Google Scholar 

  • Delewski, W., Paterkiewicz, B., Manicki, M., et al. (2016). Iron-sulfur cluster biogenesis chaperones: Evidence for emergence of mutational robustness of a highly specific protein-protein interaction. Molecular Biology and Evolution, 33, 643–656.

    Article  CAS  PubMed  Google Scholar 

  • Deloche, O., Kelley, W. L., & Georgopoulos, C. (1997). Structure-function analyses of the Ssc1p, Mdj1p, and Mge1p Saccharomyces Cerevisiae mitochondrial proteins in Escherichia Coli. Journal of Bacteriology, 179, 6066–6075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, M., Bridges, J. P., Apsley, K., Xu, Y., & Weaver, T. E. (2008). ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Molecular Biology of the Cell, 19, 2620–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doong, H., Rizzo, K., Fang, S., Kulpa, V., Weissman, A. M., & Kohn, E. C. (2003). CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: Accumulation of poly-ubiquitinated Hsp90 client proteins. The Journal of Biological Chemistry, 278, 28490–28500.

    Article  CAS  PubMed  Google Scholar 

  • Doring, K., Ahmed, N., Riemer, T., et al. (2017). Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell, 170(298–311), e20.

    Google Scholar 

  • Duchniewicz, M., Germaniuk, A., Westermann, B., Neupert, W., Schwarz, E., & Marszalek, J. (1999). Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Molecular and Cellular Biology, 19, 8201–8210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek, J., Pfeffer, S., Lee, P. H., et al. (2015). Protein transport into the human endoplasmic reticulum. Journal of Molecular Biology, 427, 1159–1175.

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz, R., Schilke, B., Knieszner, H., Walter, W., Craig, E. A., & Marszalek, J. (2003). Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. The Journal of Biological Chemistry, 278, 29719–29727.

    Article  CAS  PubMed  Google Scholar 

  • Edkins, A. L. (2015). CHIP: A co-chaperone for degradation by the proteasome. Sub-Cellular Biochemistry, 78, 219–242.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, E., Tsvetkov, P., & Ginzburg, I. (2007). BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of tau protein. The Journal of Biological Chemistry, 282, 37276–37284.

    Article  CAS  PubMed  Google Scholar 

  • Elsner, S., Simian, D., Iosefson, O., Marom, M., & Azem, A. (2009). The mitochondrial protein translocation motor: Structural conservation between the human and yeast Tim14/Pam18-Tim16/Pam16 co-chaperones. International Journal of Molecular Sciences, 10, 2041–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, C. Y., Lee, S., & Cyr, D. M. (2003). Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress & Chaperones, 8, 309–316.

    Article  CAS  Google Scholar 

  • Foufelle, F., & Ferre, P. (2007). Unfolded protein response: Its role in physiology and physiopathology. Medical Science (Paris), 23, 291–296.

    Article  Google Scholar 

  • Frazier, A. E., Dudek, J., Guiard, B., et al. (2004). Pam16 has an essential role in the mitochondrial protein import motor. Nature Structural & Molecular Biology, 11, 226–233.

    Article  CAS  Google Scholar 

  • Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M., & Walter, P. (2013). Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor Perspectives in Biology, 5, a013169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautschi, M., Lilie, H., Funfschilling, U. et al. (2001). RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proceedings of the National Academy of Sciences of the United States of America 98, 3762–3767.

    Article  CAS  Google Scholar 

  • Gautschi, M., Mun, A., Ross, S., Rospert, S. (2002). A functional chaperone triad on the yeast ribosome. Proceedings of the National Academy of Sciences of the United States of America 99, 4209–4214.

    Article  CAS  Google Scholar 

  • Gething, M. J. (1999). Role and regulation of the ER chaperone BiP. Seminars in Cell & Developmental Biology, 10, 465–472.

    Article  CAS  Google Scholar 

  • Glick, B. S. (1995). Pathways and energetics of mitochondrial protein import in Saccharomyces Cerevisiae. Methods in Enzymology, 260, 224–231.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, A. V., Chittoor, B., & D'Silva, P. (2010). Understanding the functional interplay between mammalian mitochondrial Hsp70 chaperone machine components. The Journal of Biological Chemistry, 285, 19472–19482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumiero, A., Conz, C., Gese, G. V., et al. (2016). Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain. Nature Communications, 7, 13563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham, H., Woolery, A. R., Tracy, C., Stenesen, D., Kramer, H., & Orth, K. (2014). Unfolded protein response-regulated drosophila fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. The Journal of Biological Chemistry, 289, 36059–36069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16, 574–581.

    Article  CAS  Google Scholar 

  • Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Hassdenteufel, S., Klein, M. C., Melnyk, A., & Zimmermann, R. (2014). Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochemistry and Cell Biology, 92, 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Hendershot, L. M. (2004). The ER function BiP is a master regulator of ER function. Mount Sinai Journal of Medicine, 71, 289–297.

    PubMed  Google Scholar 

  • Huang, P., Gautschi, M., Walter, W., Rospert, S., & Craig, E. A. (2005). The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nature Structural & Molecular Biology, 12, 497–504.

    Article  CAS  Google Scholar 

  • Hubscher, V., Mudholkar, K., & Rospert, S. (2017). The yeast Hsp70 homolog Ssb: A chaperone for general de novo protein folding and a nanny for specific intrinsically disordered protein domains. Current Genetics, 63, 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, J. A., Salmani, J. M. M., Jiang, Z., et al. (2017). Autophagy: An overview and its roles in cancer and obesity. Clinica Chimica Acta, 468, 85–89.

    Article  CAS  Google Scholar 

  • Ji, C. H., & Kwon, Y. T. (2017). Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Molecules and Cells, 40, 441–449.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jin, Y., Awad, W., Petrova, K., & Hendershot, L. M. (2008). Regulated release of ERdj3 from unfolded proteins by BiP. The EMBO Journal, 27, 2873–2882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahali, S., Sarcar, B., Fang, B., et al. (2010). Activation of the unfolded protein response contributes toward the antitumor activity of vorinostat. Neoplasia, 12, 80–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology, 11, 579–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kania, E., Pajak, B., & Orzechowski, A. (2015). Calcium homeostasis and ER stress in control of autophagy in cancer cells. BioMed Research International, 352794.

    Google Scholar 

  • Kaushik, S., & Cuervo, A. M. (2012). Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends in Cell Biology, 22, 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettern, N., Dreiseidler, M., Tawo, R., & Hohfeld, J. (2010). Chaperone-assisted degradation: Multiple paths to destruction. Biological Chemistry, 391, 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Kim, R., Saxena, S., Gordon, D. M., Pain, D., & Dancis, A. (2001). J-domain protein, Jac1p, of yeast mitochondria required for iron homeostasis and activity of Fe-S cluster proteins. The Journal of Biological Chemistry, 276, 17524–17532.

    Article  CAS  PubMed  Google Scholar 

  • Kityk, R., Kopp, J., Sinning, I., & Mayer, M. P. (2012). Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Molecular Cell, 48, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Koplin, A., Preissler, S., Ilina, Y., et al. (2010). A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. The Journal of Cell Biology, 189, 57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korennykh, A., & Walter, P. (2012). Structural basis of the unfolded protein response. Annual Review of Cell and Developmental Biology, 28, 251–277.

    Article  CAS  PubMed  Google Scholar 

  • Kozany, C., Mokranjac, D., Sichting, M., Neupert, W., & Hell, K. (2004). The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nature Structural & Molecular Biology, 11, 234–241.

    Article  CAS  Google Scholar 

  • Kronidou, N.G., Oppliger, W., Bolliger, L. et al. (1994). Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proceedings of the National Academy of Sciences of the United States of America. 91, 12818–12822.

    Article  CAS  Google Scholar 

  • Kutik, S., Stroud, D. A., Wiedemann, N., & Pfanner, N. (2009). Evolution of mitochondrial protein biogenesis. Biochimica et Biophysica Acta, 1790, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Lai, A. L., Clerico, E. M., Blackburn, M. E., et al. (2017). Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. The Journal of Biological Chemistry, 292, 8773–8785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laloraya, S., Gambill, B.D., Craig, E.A. (1994). A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proceedings of the National Academy of Sciences of the United States of America 91, 6481–6485.

    Article  CAS  Google Scholar 

  • Leidig, C., Bange, G., Kopp, J., et al. (2013). Structural characterization of a eukaryotic chaperone--the ribosome-associated complex. Nature Structural & Molecular Biology, 20, 23–28.

    Article  CAS  Google Scholar 

  • Lewy, T. G., Grabowski, J. M., & Bloom, M. E. (2017). BiP: Master regulator of the unfolded protein response and crucial factor in Flavivirus biology. The Yale Journal of Biology and Medicine, 90, 291–300.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Dudek, J., Guiard, B., Pfanner, N., Rehling, P., & Voos, W. (2004). The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. The Journal of Biological Chemistry, 279, 38047–38054.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Yang, Q., & Mao, Z. (2011). Chaperone-mediated autophagy: Machinery, regulation and biological consequences. Cellular and Molecular Life Sciences, 68, 749–763.

    Article  CAS  PubMed  Google Scholar 

  • Lievremont, J.P., Rizzuto, R., Hendershot,.L., Meldolesi, J. (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. The Journal of Biological Chemistry 272, 30873–30879.

    Article  PubMed  Google Scholar 

  • Liu, Q., & Hendrickson, W. A. (2007). Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell, 131, 106–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maattanen, P., Gehring, K., Bergeron, J. J., & Thomas, D. Y. (2010). Protein quality control in the ER: The recognition of misfolded proteins. Seminars in Cell & Developmental Biology, 21, 500–511.

    Article  CAS  Google Scholar 

  • Mapa, K., Sikor, M., Kudryavtsev, V., et al. (2010). The conformational dynamics of the mitochondrial Hsp70 chaperone. Molecular Cell, 38, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Marcinowski, M., Holler, M., Feige, M. J., Baerend, D., Lamb, D. C., & Buchner, J. (2011). Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nature Structural & Molecular Biology, 18, 150–158.

    Article  CAS  Google Scholar 

  • Massey, A. C., Zhang, C., & Cuervo, A. M. (2006). Chaperone-mediated autophagy in aging and disease. Current Topics in Developmental Biology, 73, 205–235.

    Article  CAS  PubMed  Google Scholar 

  • Matouschek, A., Pfanner, N., & Voos, W. (2000). Protein unfolding by mitochondria. The Hsp70 import motor. EMBO Reports, 1, 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, M. P. (2013). Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences, 38, 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, M. P., & Kityk, R. (2015). Insights into the molecular mechanism of allostery in Hsp70s. Frontiers in Molecular Biosciences, 2, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCaffrey, K., & Braakman, I. (2016). Protein quality control at the endoplasmic reticulum. Essays in Biochemistry, 60, 227–235.

    Article  PubMed  Google Scholar 

  • McDonough, H., & Patterson, C. (2003). CHIP: A link between the chaperone and proteasome systems. Cell Stress & Chaperones, 8, 303–308.

    Article  CAS  Google Scholar 

  • Miao, B., Davis, J. E., & Craig, E. A. (1997). Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces Cerevisiae. Journal of Molecular Biology, 265, 541–552.

    Article  CAS  PubMed  Google Scholar 

  • Mokranjac, D., Sichting, M., Neupert, W., & Hell, K. (2003). Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. The EMBO Journal, 22, 4945–4956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokranjac, D., Bourenkov, G., Hell, K., Neupert, W., & Groll, M. (2006). Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. The EMBO Journal, 25, 4675–4685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert, W., & Brunner, M. (2002). The protein import motor of mitochondria. Nature Reviews. Molecular Cell Biology, 3, 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Neupert, W., & Herrmann, J. M. (2007). Translocation of proteins into mitochondria. Annual Review of Biochemistry, 76, 723–749.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, K., Brinker, A., Paschen, S. A., et al. (2002). The protein import motor of mitochondria: A targeted molecular ratchet driving unfolding and translocation. The EMBO Journal, 21, 3659–3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, I., & Ghosh, M. K. (2014). The E3 ligase CHIP: Insights into its structure and regulation. BioMed Research International, 918183.

    Google Scholar 

  • Peisker, K., Braun, D., Wolfle, T., et al. (2008). Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Molecular Biology of the Cell, 19, 5279–5288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polier, S., Dragovic, Z., Hartl, F. U., & Bracher, A. (2008). Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell, 133, 1068–1079.

    Article  CAS  PubMed  Google Scholar 

  • Preissler, S., & Deuerling, E. (2012). Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences, 37, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Preissler, S., Chambers, J. E., Crespillo-Casado, A., et al. (2015a). Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. eLife, 4, e08961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Preissler, S., Rato, C., Chen, R., et al. (2015b). AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. eLife, 4, e12621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prip-Buus, C., Westerman, B., Schmitt, M., Langer, T., Neupert, W., & Schwarz, E. (1996). Role of the mitochondrial DnaJ homologue, Mdj1p, in the prevention of heat-induced protein aggregation. FEBS Letters, 380, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Qi, L., & Zhang, X. D. (2014). Role of chaperone-mediated autophagy in degrading Huntington's disease-associated huntingtin protein. Acta Biochimica et Biophysica Sinica Shanghai, 46, 83–91.

    Article  CAS  Google Scholar 

  • Qi, R., Sarbeng, E. B., Liu, Q., et al. (2013). Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nature Structural & Molecular Biology, 20(7), 900.

    Article  CAS  Google Scholar 

  • Rakwalska, M., & Rospert, S. (2004). The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces Cerevisiae. Molecular and Cellular Biology, 24, 9186–9197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassow, J., Maarse, A. C., Krainer, E., et al. (1994). Mitochondrial protein import: Biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. The Journal of Cell Biology, 127, 1547–1556.

    Article  CAS  PubMed  Google Scholar 

  • Rout, A. K., Strub, M. P., Piszczek, G., & Tjandra, N. (2014). Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. The Journal of Biological Chemistry, 289, 35111–35123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, N., Prip-Buus, C., Westermann, B., et al. (1994). Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell, 77, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Rudiger, S., Germeroth, L., Schneider-Mergener, J., & Bukau, B. (1997). Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. The EMBO Journal, 16(7), 1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuragi, S., Liu, Q., & Craig, E. (1999). Interaction between the nucleotide exchange factor Mge1 and the mitochondrial Hsp70 Ssc1. The Journal of Biological Chemistry, 274, 11275–11282.

    Article  CAS  PubMed  Google Scholar 

  • Sanjuan Szklarz, L. K., Guiard, B., Rissler, M., et al. (2005). Inactivation of the mitochondrial heat shock protein zim17 leads to aggregation of matrix hsp70s followed by pleiotropic effects on morphology and protein biogenesis. Journal of Molecular Biology, 351, 206–218.

    Article  CAS  PubMed  Google Scholar 

  • Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833, 3460–3470.

    Article  CAS  PubMed  Google Scholar 

  • Sanyal, A., Chen, A. J., Nakayasu, E. S., et al. (2015). A novel link between fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. The Journal of Biological Chemistry, 290, 8482–8499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauble, N., Lang, S., Jung, M., et al. (2012). BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. The EMBO Journal, 31, 3282–3296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schilke, B., Williams, B., Knieszner, H., et al. (2006). Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Current Biology, 16, 1660–1665.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, S., Strub, A., Rottgers, K., Zufall, N., & Voos, W. (2001). The two mitochondrial heat shock proteins 70, Ssc1 and Ssq1, compete for the cochaperone Mge1. Journal of Molecular Biology, 313, 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, H. C., Berthold, J., Bauer, M. F., et al. (1994). Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature, 371, 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y., & Hendershot, L. M. (2005). ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Molecular Biology of the Cell, 16, 40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sichting, M., Mokranjac, D., Azem, A., Neupert, W., & Hell, K. (2005). Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. The EMBO Journal, 24, 1046–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikor, M., Mapa, K., von Voithenberg, L. V., Mokranjac, D., & Lamb, D. C. (2013). Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. The EMBO Journal, 32, 1639–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, J. F., Dinler, G., Sivendran, R., Montgomery, D. L., Stotz, M., & Gierasch, L. M. (2007). Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Molecular Cell, 26, 27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truscott, K. N., Voos, W., Frazier, A. E., et al. (2003). A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. The Journal of Cell Biology, 163, 707–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungermann, C., Neupert, W., & Cyr, D. M. (1994). The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. Science, 266, 1250–1253.

    Article  CAS  PubMed  Google Scholar 

  • Voisine, C., Cheng, Y.C., Ohlson, M. et al. (2001). Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces Cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 98, 1483–1488.

    Article  CAS  Google Scholar 

  • von Ahsen, O., Voos, W., Henninger, H., & Pfanner, N. (1995). The mitochondrial protein import machinery. Role of ATP in dissociation of the Hsp70.Mim44 complex. The Journal of Biological Chemistry, 270, 29848–29853.

    Article  Google Scholar 

  • Voos, W., & Rottgers, K. (2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochimica et Biophysica Acta, 1592, 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Lee, J., Liem, D., & Ping, P. (2017). HSPA5 gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene, 618, 14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann, B., Gaume, B., Herrmann, J. M., Neupert, W., & Schwarz, E. (1996). Role of the mitochondrial DnaJ homolog Mdj1p as a chaperone for mitochondrially synthesized and imported proteins. Molecular and Cellular Biology, 16, 7063–7071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann, N., & Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annual Review of Biochemistry, 86, 685–714.

    Article  CAS  PubMed  Google Scholar 

  • Willmund, F., del Alamo, M., Pechmann, S., et al. (2013). The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell, 152, 196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, H., Momose, T., Yatsukawa, Y., et al. (2005). Identification of a novel member of yeast mitochondrial Hsp70-associated motor and chaperone proteins that facilitates protein translocation across the inner membrane. FEBS Letters, 579, 507–511.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Nune, M., Zong, Y., Zhou, L., & Liu, Q. (2015). Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure, 23, 2191–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X., Zhao, X., Burkholder, W. F., et al. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuravleva, A., Clerico, E. M., & Gierasch, L. M. (2012). An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell, 151, 1296–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, R., Eyrisch, S., Ahmad, M., & Helms, V. (2011). Protein translocation across the ER membrane. Biochimica et Biophysica Acta, 1808, 912–924.

    Article  CAS  PubMed  Google Scholar 

  • Zuiderweg, E. R., Bertelsen, E. B., Rousaki, A., Mayer, M. P., Gestwicki, J. E., & Ahmad, A. (2013). Allostery in the Hsp70 chaperone proteins. Topics in Current Chemistry, 328, 99–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge Dr. Kausik Chakraborty, Asmita Ghsoh and Joshua Jebakumar Peter for their critical comments on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koyeli Mapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Mapa, K. (2018). Hsp70: A Multi-Tasking Chaperone at the Crossroad of Cellular Proteostasis. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_10

Download citation

Publish with us

Policies and ethics