Cosmological Thermodynamics in the Gravitationally Induced Particle Creation Mechanism

  • Subhajit SahaEmail author
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


This chapter deals with a thermodynamic analysis on the apparent horizon of a spatially flat Friedmann–Lemaitre–Robertson–Walker universe endowed with the gravitationally induced adiabatic particle creation described by an arbitrary particle creation rate. Assuming a perfect fluid with a (constrained) constant equation of state, the validity of the first law, the generalized second law, and thermodynamic equilibrium have been tested. It is evident that our analysis may help to constrain various parameters of phenomenological particle creation models that have been considered in recent literature.


Dissipative process Nonequilibrium thermodynamics Eckart theory Israel–Stewart theory Bulk viscosity Creation pressure Specific entropy Isentropic particle creation 


  1. Balfagon, A.C. 2015. Accelerated expansion of the universe based on particle creation-destruction processes and dark energy in FLRW universes. General Relativity and Gravitation 47: 111.ADSMathSciNetCrossRefGoogle Scholar
  2. Birrell, N.D., and P.C.W. Davies. 1982. Quantum fields in curved space. Cambridge: Cambridge University Press.Google Scholar
  3. Calvao, M.O., J.A.S. Lima, and I. Waga. 1992. On the thermodynamics of matter creation in cosmology. Physics Letters A 162: 223.ADSCrossRefGoogle Scholar
  4. Chakraborty, S., and S. Saha. 2014. Complete cosmic scenario from inflation to late time acceleration: Nonequilibrium thermodynamics in the context of particle creation. Physical Review D 90: 123505.ADSCrossRefGoogle Scholar
  5. Chakraborty, S., S. Pan, and S. Saha. 2014. A third alternative to explain recent observations: Future deceleration. Physics Letters B 738: 424.ADSCrossRefGoogle Scholar
  6. Eckart, C. 1940. The Thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Physical Review 58: 919.ADSCrossRefGoogle Scholar
  7. Gunzig, E., R. Maartens, and A.V. Nesteruk. 1998. Inflationary cosmology and thermodynamics. Classical and Quantum Gravity 15: 923.ADSMathSciNetCrossRefGoogle Scholar
  8. Israel, W. 1976. Nonstationary irreversible thermodynamics: A causal relativistic theory. Annals of Physics (New York) 100: 310.ADSMathSciNetCrossRefGoogle Scholar
  9. Israel, W., and J.M. Stewart. 1979a. On transient relativistic thermodynamics and kinetic theory. II. Proceedings of the Royal Society A 365: 43.ADSMathSciNetCrossRefGoogle Scholar
  10. Israel, W., and J.M. Stewart. 1979b. Transient relativistic thermodynamics and kinetic theory. Annals of Physics (New York) 118: 341.ADSMathSciNetCrossRefGoogle Scholar
  11. Landau, L.D., and E.M. Lifshitz. 1958. Fluid mechanics. Reading: Addison-Wesley.Google Scholar
  12. Lima, J.A.S., and A.S.M. Germano. 1992. On the equivalence of bulk viscosity and matter creation. Physics Letters A 170: 373.ADSCrossRefGoogle Scholar
  13. Lima, J.A.S., M.O. Calvao, and I. Waga. Cosmology, thermodynamics and matter creation. arXiv:0708.3397 [astro-ph].Google Scholar
  14. Lima, J.A.S., L.L. Graef, D. Pavón, and S. Basilakos. 2014. Journal of Cosmology and Astroparticle Physics 10: 042 (and references therein).CrossRefGoogle Scholar
  15. Maartens, R. 1996. arXiv:astro-ph/9609119. In Proceedings of the Hanno Rund conference on relativity and thermodynamics, ed. S.D. Maharaj. Durban: University of Natal.Google Scholar
  16. Mukhanov, V., and S. Winitzki. 2007. Introduction to quantum effects in gravity. Cambridge: Cambridge University Press.Google Scholar
  17. Muller, I. 1967. Zum Paradoxon der Warmeleitungstheorie. Zeitschrift für Physik 198: 329.ADSCrossRefGoogle Scholar
  18. Nunes, R.C., and D. Pavon. 2015. Phantom behavior via cosmological creation of particles. Physical Review D 91: 063526.ADSCrossRefGoogle Scholar
  19. Parker, L. 1968. Particle creation in expanding universes. Physical Review Letters 21: 562.ADSCrossRefGoogle Scholar
  20. Parker, L. 1969. Quantized fields and particle creation in expanding universes. I. Physical Review 183: 1057.ADSCrossRefGoogle Scholar
  21. Parker, L., and D.J. Toms. 2009. Quantum field theory in curved spacetime: Quantized field and gravity. Cambridge: Cambridge University Press.Google Scholar
  22. Pavón, D., D. Jou, and J. Casas-Vazquez. 1982. On a covariant formulation of dissipative phenomena. Annales de l’Institut Henri Poincaré A 36: 79.MathSciNetGoogle Scholar
  23. Prigogine, I., J. Geheniau, E. Gunzig, and P. Nardone. 1988. Proceedings of the National Academy of Sciences of the USA 85: 7428ADSMathSciNetCrossRefGoogle Scholar
  24. Prigogine, I., J. Geheniau, E. Gunzig, and P. Nardone. 1989. Thermodynamics and cosmology. General Relativity and Gravitation 21: 767.ADSMathSciNetCrossRefGoogle Scholar
  25. Saha, S., and S. Chakraborty. 2015. Particle production and universal thermodynamics. General Relativity and Gravitation 47: 122.ADSMathSciNetCrossRefGoogle Scholar
  26. Saha, S., and A. Mondal. 2017. Thermodynamic implications of the gravitationally induced particle creation scenario. The European Physical Journal C 77: 196.ADSCrossRefGoogle Scholar
  27. Saha, S., and A. Mondal. 2018. Erratum to: Thermodynamic implications of the gravitationally induced particle creation scenario. The European Physical Journal C 78: 295Google Scholar
  28. Schrodinger, E. 1939. The proper vibrations of the expanding universe. Physica 6: 899.ADSMathSciNetCrossRefGoogle Scholar
  29. Schweizer, M.A. 1982. Transient and transport coefficients for radiative fluids. The Astrophysical Journal 258: 798.ADSCrossRefGoogle Scholar
  30. Straumann, N. 1976. On radiative fluids. Helvetica Physica Acta 49: 269.ADSGoogle Scholar
  31. Udey, N., and W. Israel. 1982. General relativistic radiative transfer: The 14-moment approximation. Monthly Notices of the Royal Astronomical Society 199: 1137.ADSCrossRefGoogle Scholar
  32. Weinberg, S. 1971. Entropy generation and the survival of protogalaxies in an expanding universe. The Astrophysical Journal 168: 175.ADSCrossRefGoogle Scholar
  33. Zimdahl, W. 1996. “Understanding” cosmological bulk viscosity. Monthly Notices of the Royal Astronomical Society 280: 1239.ADSCrossRefGoogle Scholar
  34. Zimdahl, W. 2000. Cosmological particle production, causal thermodynamics, and inflationary expansion. Physical Review D 61: 083511.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Switzerland AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPanihati MahavidyalayaKolkataIndia

Personalised recommendations