Advertisement

Cosmological Thermodynamics

  • Subhajit SahaEmail author
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

This chapter starts with the origin and a brief history of the application of the thermodynamic laws to (static) black holes and its subsequent generalization to Cosmology. The concepts of the generalized second law of thermodynamics, surface gravity and its connection with Hawking temperature, and Bekenstein entropy are carefully explained. Finally, the implications of the modified and the generalized Hawking temperatures are discussed with reference to the cosmological event horizon.

Keywords

Generalized second law Bekenstein entropy Hawking temperature Holographic principle Surface gravity Bekenstein system 

References

  1. Akbar, M., and R.G. Cai. 2006. Friedmann equations of FRW universe in scalar-tensor gravity, \(f(R)\) gravity and first law of thermodynamics. Physics Letters B 635: 7.ADSMathSciNetCrossRefGoogle Scholar
  2. Bak, D., and S.J. Rey. 2000. Cosmic holography. Classical and Quantum Gravity 17: L83.MathSciNetCrossRefGoogle Scholar
  3. Bardeen, J.M., B. Carter, and S.W. Hawking. 1973. The four laws of black hole mechanics. Communications in Mathematical Physics 31: 161.ADSMathSciNetCrossRefGoogle Scholar
  4. Bekenstein, J.D. 1973. Black holes and entropy. Physical Review D 7: 2333.ADSMathSciNetCrossRefGoogle Scholar
  5. Bousso, R. 2002. The holographic principle. Reviews of Modern Physics 74: 825.ADSMathSciNetCrossRefGoogle Scholar
  6. Bousso, R. 2005. Cosmology and the S-matrix. Physical Review D 71: 064024.ADSMathSciNetCrossRefGoogle Scholar
  7. Brustein, R. 2000. Generalized second law in cosmology from causal boundary entropy. Physical Review Letters 84: 2072.ADSMathSciNetCrossRefGoogle Scholar
  8. Cai, R.G., and S.P. Kim. 2005. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. Journal of High Energy Physics 0502: 050.ADSMathSciNetCrossRefGoogle Scholar
  9. Cai, R.G., L.M. Cao, and P. Hu. 2009. Hawking radiation of apparent horizon in a FRW universe. Classical and Quantum Gravity 26: 155018.ADSCrossRefGoogle Scholar
  10. Chakraborty, S. 2012. Is thermodynamics of the universe bounded by the event horizon a Bekenstein system? Physics Letters B 718: 276.ADSCrossRefGoogle Scholar
  11. Chakraborty, S. 2014. Generalized Bekenstein-Hawking system: Logarithmic correction. European Physical Journal C 74: 2876.ADSCrossRefGoogle Scholar
  12. Davies, P.C.W. 1988. Cosmological horizons and entropy. Classical and Quantum Gravity 5: 1349.ADSMathSciNetCrossRefGoogle Scholar
  13. Faraoni, V. 2015. Cosmological and Black Hole Apparent. Horizons, Springer.Google Scholar
  14. Frolov, A.V., and L. Kofman. 2003. Inflation and de Sitter thermodynamics. Journal of Cosmology and Astroparticle Physics 05: 009.ADSMathSciNetCrossRefGoogle Scholar
  15. Gong, Y., and A. Wang. 2007. Friedmann equations and thermodynamics of apparent horizons. Physical Review Letters 99: 211301.ADSMathSciNetCrossRefGoogle Scholar
  16. Hawking, S.W. 1972. Black holes in general relativity. Communications in Mathematical Physics 25: 152.ADSMathSciNetCrossRefGoogle Scholar
  17. Hawking, S.W. 1975. Particle creation by black holes. Communications in Mathematical Physics 43: 199.ADSMathSciNetCrossRefGoogle Scholar
  18. Hayward, S.A. 1998. Unified first law of black-hole dynamics and relativistic thermodynamics. Classical and Quantum Gravity 15: 3147.ADSMathSciNetCrossRefGoogle Scholar
  19. Jacobson, T. 1995. Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters 75: 1260.ADSMathSciNetCrossRefGoogle Scholar
  20. Kodama, H. 1980. Conserved energy flux for the spherically symmetric system and the backreaction problem in the black hole evaporation. Progress of Theoretical and Experimental Physics 63: 1217.CrossRefGoogle Scholar
  21. Padmanabhan, T. 2002a. Thermodynamics of horizons: A comparison of Swarschild, Rindler and de Sitter spacetimes. Modern Physics Letters A 17: 923.ADSMathSciNetCrossRefGoogle Scholar
  22. Padmanabhan, T. 2002b. Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Classical and Quantum Gravity 19: 5387.ADSMathSciNetCrossRefGoogle Scholar
  23. Padmanabhan, T. 2005. Gravity and the thermodynamics of horizons. Physics Reports 406: 49.ADSMathSciNetCrossRefGoogle Scholar
  24. Paranjape, A., S. Sarkar, and T. Padmanabhan. 2006. Thermodynamic route to field equations in Lanczos-Lovelock gravity. Physical Review D 74: 104015.ADSMathSciNetCrossRefGoogle Scholar
  25. Poisson, E. 2004. A relativist’s toolkit: The mathematics of black hole mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Susskind, L. 1995. The world as a hologram. Journal of Mathematical Physics 36: 6377.ADSMathSciNetCrossRefGoogle Scholar
  27. ’t Hooft, G. 1993. Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026.
  28. Wald, R.M. 2001. The thermodynamics of black holes. Living Reviews in Relativity 4: 6.ADSCrossRefGoogle Scholar
  29. Wang, B., Y. Gong, and E. Abdalla. 2006. Thermodynamics of an accelerated expanding universe. Physical Review D 74: 083520.Google Scholar

Suggested Further Reading

  1. Black Hole Thermodynamics: Wald, R.M. 2001. The thermodynamics of black holes. Living Reviews in Relativity 4: 6; Carlip, S. 2014. Black hole thermodynamics. International Journal of Modern Physics D 23: 1430023.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Switzerland AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPanihati MahavidyalayaKolkataIndia

Personalised recommendations