Skip to main content

Algae in Biotechnological Processes

  • Chapter
  • First Online:
Algae Biomass: Characteristics and Applications

Part of the book series: Developments in Applied Phycology ((DAPH,volume 8))

Abstract

As photoautotrophic organisms, algae possess all of the valuable features that determine their role as the primary producers in the biosphere. A wide range of tolerance based on their extremely efficient adaptation to biochemical processes, as well as the specific cellular structure of these organisms, when correlated with the ecological plasticity of microalgae in particular, predispose these biota to growing and developing under either laboratory or industrial conditions. Hence, the natural features of algae have opened wide the door for the multidirectional biotechnological use of these organisms, with a dynamically growing number of such applications fully supporting this thesis. Among the variety of examples, however, there are two main areas of activity that involve algae in biotechnological processes. The first has arisen historically out of the long tradition of the use of biomass of algae or algal isolates as a source of substances with qualities of interest. The second area is based on the impressive biochemical machinery of algae that are able to produce, de novo, a huge number of organic compounds, as well as transform all of them. This approach allows for the use of algae as effective biocatalysts. This chapter is composed of four short stories, two of which illustrate algae as a source of select valuable chemicals (phycobiliproteins, polyphenols) and the other two of which are dedicated to the biocatalytical abilities of those organisms to protect ecosystems against organic pollutants and transition metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adalbjörnsson BV, Jónsdóttir R (2015) Enzyme-enhanced extraction of antioxidant ingredients from algae. Methods Mol Biol 1308:145–150

    Article  PubMed  CAS  Google Scholar 

  • Agatonovic-Kustrin S, Morton DW, Ristivojević P (2016) Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J Chromatogr A 1468:228–235

    Article  CAS  PubMed  Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7:57–62

    Article  CAS  Google Scholar 

  • Al-Rub FA, El-Naas M, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  • Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Mlcek J, Sochor J, Jurikova T (2014) Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules 19:2344–2360

    Article  PubMed  CAS  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    Article  PubMed  CAS  Google Scholar 

  • Awasthi M, Rai LC (2004) Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: a comparative study. Ann Microbiol 54:257–267

    CAS  Google Scholar 

  • Bachchhav MB, Kulkarni MV, Ingale AG (2016) Enhanced phycocyanin production from Spirulina platensis using light emitting diode. Dig J Inst Eng India Ser E. https://doi.org/10.1007/s40034-016-0090-8

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150:2739–2749. https://doi.org/10.1099/mic.0.27153-0

    Article  PubMed  CAS  Google Scholar 

  • Bailliez C, Largeau C, Berkaloff C, Casadevall E (1986) Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl Microbiol Biotechnol 23:361–366

    Article  CAS  Google Scholar 

  • Balaji S, Kalaivani T, Rajasekaran C (2013) Biosorption of zinc and nickel and its effect on growth of different Spirulina strains. Clean Soil Air Water 42:507–512

    Article  CAS  Google Scholar 

  • Balcerzak L, Lipok J, Strub D, Lochynski S (2014) Biotransformations of monoterpenes by photoautotrophic micro-organisms. J Appl Microbiol 117:1523–1536

    Article  PubMed  CAS  Google Scholar 

  • Beale SI, Cornejo J (1991) Biosynthesis of Phycobilins. 15,16-Dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266:22341–22345

    PubMed  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M (2004) Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatogr B 807:33–38. https://doi.org/10.1016/j.jchromb.2004.01.028

    Article  CAS  Google Scholar 

  • Benitez-Nelson C (2015) Ocean chemistry. The missing link in oceanic phosphorus cycling? Science 348:759–760

    Article  PubMed  CAS  Google Scholar 

  • Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85

    Article  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Chapter  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 133–152

    Chapter  Google Scholar 

  • Boulila A, Hassen I, Haouari L, Mejri F, Ben Amor I, Casabianca H, Hosni K (2015) Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Industrial Crops and Products 74:485–493

    Article  CAS  Google Scholar 

  • Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  • Brown SB, Holroyd JA, Vernon DI (1984) Biosynthesis of phycobiliproteins. Incorporation of biliverdin into phycocyanin of the red alga Cyanidium caldarium. Biochem J 219:905–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835–844

    CAS  Google Scholar 

  • Caceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Freeman JP, Van Baalen C (1981) Biotransformation and toxicity of aniline and aniline derivatives in cyanobacteria. Arch Microbiol 130:272–275

    Article  PubMed  CAS  Google Scholar 

  • Chaloub RM, Motta NMS, de Araujo SP, de Aguiar PF, da Silva AF (2015) Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae). Algal Res 8:89–94. https://doi.org/10.1016/j.algal.2015.01.008

    Article  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzym Microb Technol 20:221–224. https://doi.org/10.1016/S0141-0229(96)00116-0

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis photoheterotrophic culture. Bitechnol Lett 18:603–308. https://doi.org/10.1007/BF00140211

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K, Zielińska A (2012) Evaluation of growth yield of Spirulina (Arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Word J Microbiol Biotechnol 28:437–445. https://doi.org/10.1007/s11274-011-0833-0

    Article  CAS  Google Scholar 

  • Colica G, Caparrotta S, Bertini G, De Philippis R (2012) Gold biosorption by exopolysaccharide producing cyanobacteria and purple nonsulphur bacteria. J Appl Microbiol 113:1380–1388

    Article  PubMed  CAS  Google Scholar 

  • Connan S, Goulard F, Stiger V, Deslandes E, Ar Gall E (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416

    Article  CAS  Google Scholar 

  • Cordery J, Will AJ, Atkinson K, Wills BA (1994) Extraction and recovery of silver from low grade liquors using microalgae. Miner Eng 7:1003–1015

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • De Corte S, Hennebel T, Verschuere S, Cuvelier C, Verstraete W, Boon N (2010) Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. J Chem Technol Biotechnol 86:547–553

    Article  CAS  Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    Article  PubMed  CAS  Google Scholar 

  • De Vargas I, Macaskie LE, Guibal E (2004) Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol 79:49–56

    Article  CAS  Google Scholar 

  • Denis C, Massé A, Fleurence J, Jaouen P (2009) Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: process definition and up-scaling. Sep Purif Technol 69:37–42. https://doi.org/10.1016/j.seppur.2009.06.017

    Article  CAS  Google Scholar 

  • Deschatre M, Ghillebaert F, Guezennec J, Simon-Colin C (2015) Study of biosorption of copper and silver by marine bacterial exopolysaccharides. WIT Trans Ecol Environ 196:549–559

    Article  Google Scholar 

  • Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J (2017) Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 19:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Eisler R (2003) Biorecovery of gold. Indian J Exp Biol 41:967–971

    PubMed  CAS  Google Scholar 

  • FDA (2014) Federal register volume 79, number 70: listing of color additives exempt from certification; Spirulina extract. https://www.gpo.gov/fdsys/pkg/FR-2014-04-11s/html/2014-08099.htm. Accessed 26 Oct 2017

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Prearo V, Wieczorek D, Kafarski P, Lipok J (2011) Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater. Enzym Microb Technol 48:299–305

    Article  CAS  Google Scholar 

  • Forlani G, Bertazzini M, Giberti S, Wieczorek D, Kafarski P, Lipok J (2013) Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis. Environ Sci Pollut Res Int 20:3263–3270

    Article  PubMed  CAS  Google Scholar 

  • Glazer A (1994) Phycobiliproteins – a family of valuable, widely used flourophores. J Appl Phycol 6:105–112. https://doi.org/10.1007/BF02186064

    Article  CAS  Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    Article  CAS  Google Scholar 

  • Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, E Baart GJ, De Cooman L (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492

    Article  PubMed  CAS  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2007) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75. https://doi.org/10.1007/s00253-007-1150-2

    Article  PubMed  CAS  Google Scholar 

  • Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Passion R (eds) Metal speciation, separation and recovery. Lewis Publishers, Chelsea., 1987, pp 315–338

    Google Scholar 

  • Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638

    CAS  Google Scholar 

  • Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008

    Article  PubMed  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  PubMed  CAS  Google Scholar 

  • Harnedy PA, Fitz Gerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT – Food Sci Technol 51:375–382. https://doi.org/10.1016/j.lwt.2012.09.023

    Article  CAS  Google Scholar 

  • Hayouni EA, Abedrabba M, Bouix M, Hamdi M (2007) The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem 105:1126–1134

    Article  CAS  Google Scholar 

  • Heimann K, Cires S (2015) N2 -Fixing cyanobacteria: ecology and biotechnological applications. In: Se-Kwon K (ed) Handbook of microalgae: biotechnology advances. Academic, London, pp 501–515

    Chapter  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Holm O, Hansen E, Lassen C, Stuer-Lauridsen F, Kjolholt J (2002) Heavy metals in waste. European Commission DG ENV. E3, Project ENV.E.3/ETU/2000/0058. Final report

    Google Scholar 

  • Huertas MJ, Lopez-Maury L, Giner-Lamia J, Sanchez-Riego AM, Florencio FJ (2014) Metals in Cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    Article  PubMed  CAS  Google Scholar 

  • Kafarski P, Lejczak B, Forlani G (2000) Biodegradation of pesticides containing carbon to phosphorus bond. In: Hall JC, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms, Similarities and Divergencies. ACS, Washington, DC, pp 145–163

    Chapter  Google Scholar 

  • Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell Publishing, Ames, pp 439–447

    Chapter  Google Scholar 

  • Kaushik S, Sahu BK, Lawania RK, Tiwari RK (1999) Occurrence of heavy metals in lentic water of Gwalior region. Pollut Res 18:137–140

    CAS  Google Scholar 

  • Kim SM, Kang SW, Jeon JS, Jung YJ, Kim WR, Kim CY, Um BH (2013) Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: seasonal variation and extraction characteristics. Food Chem 138:2399–2406

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12:1135–1143. https://doi.org/10.1039/c3pp25406b

    Article  PubMed  CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204

    Article  CAS  Google Scholar 

  • Koivikko R, Loponen J, Pihlaja K, Jormalainen V (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18:326–332

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy R, Wilson DB (2000) Construction and characterization of an Escherichia coli strain genetically engineered for Ni (II) bioaccumulation. Appl Environ Microbiol 66:5383–5386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kronick MN (1988) Phycobiliproteins as labels in immunoassay. In: Ngo TT (ed) Nonisotopic immunoassay, 1st edn. Springer, New York, pp 163–185

    Chapter  Google Scholar 

  • Kula M, Rys M, Saja D, Tys J, Skoczowski A (2016) Far-red dependent changes in the chemical composition of Spirulina platensis. Eng Life Sci 16:777–785

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. Appl Environ Microbiol 73:243–249

    Article  PubMed  CAS  Google Scholar 

  • Les A, Walker RW (1984) Toxicity and binding of copper, zinc and cadmium by the blue- green alga Chroococcus paris. Water Air Soil Pollut 23:129–139

    Article  CAS  Google Scholar 

  • Li YX, Wijesekara I, Li Y, Kim SK (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224

    Article  CAS  Google Scholar 

  • Lin S, Litaker RW, Sunda WG (2016) Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol 52:10–36

    Article  PubMed  CAS  Google Scholar 

  • Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates—the ability of Spirulina spp. to degrade glyphosate. Enzyme Microb Technol 41:286–291

    Article  CAS  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lodi A, Soletto D, Solisio C, Converti A (2008) Chromium(III) removal by Spirulina platensis biomass. Chem Eng J 136:151–155

    Article  CAS  Google Scholar 

  • López-Figueroa F (1992) Diurnal variation in pigment content in Porphyra laciniata and Chondrus crispus and its relation to the diurnal changes of underwater light quality and quantity. PSZNI: Mar Ecol 13:285–305

    Article  Google Scholar 

  • Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques, 1st edn. Elsevier, Amsterdam, pp 145–156

    Google Scholar 

  • Maharana D, Das PB, Verlecar XN, Pise NM, Gauns MU (2015) Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ Sci Pollut Res Int 22:18741–18749

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  PubMed  CAS  Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Lipton AP (2009) Antimicrobial potential and seasonality of red algae collected from the Southwest coast of India tested against shrimp, human and phytopathogens. Ann Microbiol 59:207–219

    Article  CAS  Google Scholar 

  • Mannino AM, Vaglica V, Oddo E (2014) Seasonal variation in total phenolic content of Dictyopteris polypodioides (Dictyotaceae) and Cystoseira amentacea (Sargassaceae) from the Sicilian coast. Fl Medit 24:39–50

    Article  Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WS (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  PubMed  CAS  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characterization of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410. https://doi.org/10.1016/0922-338X(93)90034-6

  • Mata YN, Torres E, Blázquez ML, Ballester A, González F, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  PubMed  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  PubMed  CAS  Google Scholar 

  • Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14:581–591

    Article  CAS  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  • Mišurcová L (2011) Chemical composition of seaweeds. In: Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley, Chichester, pp 173–192

    Google Scholar 

  • Monteiro C, Castro PL, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17:129–135. https://doi.org/10.1007/s10811-005-7214-8

    Article  CAS  Google Scholar 

  • Munier M, Morançais M, Dumay J, Jaouen P (2015) One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B 992:23–29. https://doi.org/10.1016/j.jchromb.2015.04.012

    Article  CAS  Google Scholar 

  • Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemoth 50:889–893

    Article  CAS  Google Scholar 

  • Niu H, Volesky B (1999) Characteristics of gold biosorption from cyanide solution. J Chem Technol Biotechnol 74:778–784

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  PubMed  CAS  Google Scholar 

  • Oswald W (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Padmini Sreenivasa Rao PP, Karmarkar SM (1986) Antibacterial substances from brown algae II. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii Setchell et Gardner. Bot Mar 29:503–507

    Article  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil G, Raghavarao KSMS (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34:156–164. https://doi.org/10.1016/j.bej.2006.11.026

    Article  CAS  Google Scholar 

  • Patra JK, Rath SK, Jena KB, Rathod VK, Thatoi H (2008) Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract: a study on inhibition of glutathione-S-transferase activity. Turk J Biol 32:119–125

    Google Scholar 

  • Pavlostathis SG, Jackson GH (2002) Biotransformation of 2,4,6-trinitrotoluene in a continuous-flow Anabaena sp. system. Water Res 36:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Pesce S, Batisson I, Bardot C, Fajon C, Portelli C, Montuelle B, Bohatier J (2009) Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol Environ Saf 72:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Peter P, Phaninatha Sarma A, Azeem ul Hasan MD, Murthy SDS (2010) Studies on the impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Int 3:30–34

    CAS  Google Scholar 

  • Pethkar AV, Paknikar KM (1998) Recovery of gold from solutions using Cladosporium cladosporioides biomass beads. J Biotechnol 63:121–136

    Article  CAS  Google Scholar 

  • Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresour Technol 80:211–215

    Article  PubMed  CAS  Google Scholar 

  • Pirszel J, Pawlik B, Skowroński T (1995) Cation exchange capacity of algae and cyanobacteria: a parameter of their sorption abilities. J Ind Microbiol 14:319–322

    Article  CAS  Google Scholar 

  • Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584

    Article  CAS  Google Scholar 

  • Prasanna R, Jaiswal P, Kaushik BD (2008) Cyanobacteria as potential options for environment al sustainability – promises and challenges. Indian J Microbiol 48:89–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53

    Article  CAS  Google Scholar 

  • Ravi V, Balakumar H (1998) Biodegradation of the C-P bond in glyphosate by the cyanobacterium Anabaena variabilis L. J Sci Ind Res 57:790–794

    CAS  Google Scholar 

  • Rimbau V, Caminis A, Romay C, González PM (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78

    Article  PubMed  CAS  Google Scholar 

  • Romay C, Armesto J, Remirez D, Goznález R, Ledon N, Garcia I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 47:36–41. https://doi.org/10.1007/s000110050256

    Article  PubMed  CAS  Google Scholar 

  • Romay C, Goznález R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  PubMed  CAS  Google Scholar 

  • Romero-Gonzalez ME, Williams CJ, Gardiner PHE, Gurman SJ, Habesh S (2003) Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environ Sci Technol 37:4163–4169

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693

    Article  PubMed  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Ann Rev Nutr 22:19–34

    Article  CAS  Google Scholar 

  • Salmon-Monviola J, Gascuel-Odoux C, Garcia F, Tortrat F, Cordier M-O, Masson V, Trépos R (2011) Simulating the effect of technical and environmental constraints on the spatio-temporal distribution of herbicide applications and stream losses. Agric Ecosyst Environ 140:382–394

    Article  Google Scholar 

  • Sarada R, Pillai M, Ravishankar G (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801

    Article  CAS  Google Scholar 

  • Sathyasaikumar KV, Swapna I, Reddy PVB, Murthy CRK, Roy KR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Co-administration of C-Phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats. J Neurol S 252:64–75. https://doi.org/10.1016/j.jns.2006.10.014

    Google Scholar 

  • Savvaidis I (1998) Recovery of gold from thiourea solutions using microorganisms. Bio Metal 11:145–151

    Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption by marine algae. In: Valdes J (ed) Bioremediation. Springer, Netherlands, pp 139–169

    Chapter  Google Scholar 

  • Sekar S, Chandramohan M (2007) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136. https://doi.org/10.1007/s10811-007-9188-1

    Article  Google Scholar 

  • Seker A, Shahwan T, Eroglu AE, Yılmaz S, Demirel Z, Dalay MC (2008) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis. J Hazard Mater 154:973–980

    Article  PubMed  CAS  Google Scholar 

  • Sharpley A, Wang X (2014) Managing agricultural phosphorus for water quality: lessons from the USA and China. J Environ Sci (China) 26:1770–1782

    Article  Google Scholar 

  • Silva-Stenico ME, Vieira FDP, Genuário DB, Silva CSP, Moraes LAB, Fiore MF (2012) Decolorization of textile dyes by cyanobacteria. J Braz Chem Soc 23:1863–1870

    Article  CAS  Google Scholar 

  • Simeunović J, Bešlin K, Svirčev Z, Kovač D, Babić O (2013) Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. J Appl Phycol 25:597–607. https://doi.org/10.1007/s10811-012-9894-1

    Article  CAS  Google Scholar 

  • Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106. https://doi.org/10.1146/annurev.pa.36.040196.000503

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Parmar A, Sonani RR (2012) Madamwar D Isolation, identification and characterization of novel thermotolerant Oscillatoria sp. N9DM: change in pigmentation profile in response to temperature. Process Biochem 47:2472–2479. https://doi.org/10.1016/j.procbio.2012.10.009

    Article  CAS  Google Scholar 

  • Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Tech 38:168–175. oi:10.1016/j.enzmictec.2005.05.010

    Article  CAS  Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Techhnol 99:188–194. https://doi.org/10.1016/j.biortech.2006.11.010

    Article  CAS  Google Scholar 

  • Sørensen L, Hantke A, Eriksen NT (2013) Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J Sci Food Agric 93:2933–2938. https://doi.org/10.1002/jsfa.6116

    Article  PubMed  CAS  Google Scholar 

  • Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180(9):2280–2284

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stadnichuk IN, Krasilnikov PM, Zlenko DV (2015) Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology 84:101–111. https://doi.org/10.1134/S0026261715020150

    Article  CAS  Google Scholar 

  • Steinberg PD (1989) Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78:373–382

    Article  PubMed  Google Scholar 

  • Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409

    Article  CAS  Google Scholar 

  • Studnik H, Liebsch S, Forlani G, Wieczorek D, Kafarski P, Lipok J (2015) Amino polyphosphonates – chemical features and practical uses, environmental durability and biodegradation. New Biotechnol 32:1–6

    Article  CAS  Google Scholar 

  • Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64:146–154. https://doi.org/10.1016/j.pep.2008.09.013

    Article  PubMed  CAS  Google Scholar 

  • Talaraico L, Cortese A (1993) Response of Audouinella saviana (Meneghini) Woelkerling (Nemaliales, Rhodophyta) cultures to monochromatic light. Hydrobiologia 260:477–484. https://doi.org/10.1007/BF00049059

    Article  Google Scholar 

  • Tandeau de Marsac N, Cohen-Bazire N (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 74:1635–1639

    Article  Google Scholar 

  • Telford WG, Hawley T, Subach F, Verkhusha V, Hawley RG (2012) Flow cytometry of fluorescent proteins. Methods 57(3):318–330

    Article  PubMed  CAS  Google Scholar 

  • Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivates from marine brown algae. Environ Toxicol Pharmacol 32:325–335

    Article  PubMed  CAS  Google Scholar 

  • Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegr 64:447–451

    Article  CAS  Google Scholar 

  • US_Environmental Protection Agency (2011) Working in partnership with states to address phosphorus and nitrogen pollution through use of a framework for state nutrient reductions

    Google Scholar 

  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5:331–349. https://doi.org/10.1080/17597269.2014.913925

    Article  CAS  Google Scholar 

  • Van Mooy BA, Krupke A, Dyhrman ST, Fredricks HF, Frischkorn KR, Ossolinski JE, Repeta DJ, Rouco M, Seewald JD, Sylva SP (2015) Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348:783–785

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Sánches J, Ramón-Gallegos E, Mojica-Villegas A, Madrigal-Bujaidar E, Pérez-Pastén-Borja, Chamorro-Cevallos G (2009) Spirulina maxima and its protein extract protect against hydroxyurea-teratogenic insult in mice. Food Chem Toxicol 47:2785–2789. https://doi.org/10.1016/j.fct.2009.08.013

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Vendrell E, Ferraz DG, Sabater C, Carrasco JM (2009) Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay. Bull Environ Contam Toxicol 82:538–542

    Article  PubMed  CAS  Google Scholar 

  • Vera MS, Lagomarsino L, Sylvester M, Perez GL, Rodriguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19:710–721

    Article  PubMed  CAS  Google Scholar 

  • Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacterium. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  PubMed  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 6:25–35

    Article  CAS  Google Scholar 

  • Wells S, Johnson I (1994) Fluorescent Labels for Confocal Microscopy. In: Buetow DE, Stevens JK, Cameron IT, Mills LR, Padilla GM, Trogadis JE Zimmerman AM (eds) Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens. Elsevier, San Diego, pp 101–129

    Chapter  Google Scholar 

  • Wijesinghe WAJP, Jeon YJ (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12

    Article  CAS  PubMed  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    Article  PubMed  CAS  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Yang YF (2008) Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P. J Exp Mar Biol Ecol 367:142–148. https://doi.org/10.1016/j.jembe.2008.09.009

    Article  CAS  Google Scholar 

  • Yu G, Shi D, Cai Z, Cong W, Ouyang F (2011) Growth and physiological features of cyanobacterium Anabaena sp. strain PCC 7120 in glucose-mixotrophic culture. Chin J Chem Eng 19:108–115

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    Article  CAS  Google Scholar 

  • Zern TL, Fernandez ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135:2291–2294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Lipok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemczyk, E., Żyszka-Haberecht, B., Drzyzga, D., Lenartowicz, M., Lipok, J. (2018). Algae in Biotechnological Processes. In: Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I. (eds) Algae Biomass: Characteristics and Applications. Developments in Applied Phycology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-74703-3_4

Download citation

Publish with us

Policies and ethics