Skip to main content

Economic Aspects of Algae Biomass Harvesting for Industrial Purposes. The Life-Cycle Assessment of the Product

  • Chapter
  • First Online:
  • 2243 Accesses

Part of the book series: Developments in Applied Phycology ((DAPH,volume 8))

Abstract

Biomass derived from algae is a valuable raw product for agriculture and the chemical industry. The chemical composition of the algae biomass obtained from the natural environment, culture under natural conditions, and culture in bioreactors determines its application to the energy, fuel, and cosmetic industries. The use of biomass, as well as the extracts derived from biomass, is discussed in regard to the economic aspect and life-cycle assessment. The economic aspects of obtaining biomass algae in the product life cycle are discussed for the bioproducts industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour Technol 163:343–355

    Article  CAS  PubMed  Google Scholar 

  • Agenda 21 (1992) United Nations Division for Sustainable Development. https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf. Accessed 10 May 2017

  • Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56

    Article  CAS  Google Scholar 

  • Alassali A, Cybulska I, Brudecki GP, Farzanah R, Thomsen MH (2016) Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv Tech Biol Med 4:163. https://doi.org/10.4172/2379-1764.1000163

    Article  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. J Biotechnol 142:64–69

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56

    Article  CAS  Google Scholar 

  • Aresta M, Angela D, Tommasi I (2003) Energy from macro-algae. Fuel Chem Preprints 48:260–261

    CAS  Google Scholar 

  • Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA Study. Fuel Process Technol 86:1679–1693

    Article  CAS  Google Scholar 

  • Atkinson G, Dietz S, Neumayer E (eds) (2009). Handbook of sustainable development. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980

    Article  CAS  PubMed  Google Scholar 

  • Bedoux G, Bourgougnon N (2015) Bioactivity of secondary metabolites from Macroalgae. In: Sahoo D, Seckbach J (eds) The algae world, Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht, pp 391–401

    Chapter  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  PubMed  Google Scholar 

  • Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Appl Energy 154:1062–1071

    Article  CAS  Google Scholar 

  • Biodigester (2016) https://pl.pinterest.com/outsidethebox2/biodigester/. Accessed 10 May 2017

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Article  CAS  PubMed  Google Scholar 

  • Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144

    Article  CAS  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  Google Scholar 

  • Cardwell D. (2013) Unilever to buy oil derived from algae from solazyme. The New York Times

    Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: Economics and policies. Energy Policy 39:4222–4234

    Article  Google Scholar 

  • Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives renewable and sustainable. Energy Rev 47:427–437

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Community Register of Feed Additives pursuant to Regulation (2003) No 1831/2003. Council Directive 70/524/EEC concerning additives in feedingstuffs – list of authorised additives in feeding stuffs (2004/C 50/01)

    Google Scholar 

  • Comprehensive Report on Attractive Algae Product Opportunities – Preview (2015) https://secure.clixoo.com/purchase/oilgae/alg_pdt/report.html Accessed 10 May 2017

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Craigie JS, MacKinnon SL, Walter JA (2008) Liquid seaweed extracts identified using 1H NMR profiles. J Appl Phycol 20:665–671

    Article  Google Scholar 

  • Dave A, Huang Y, Rezvani S, McIlveen-Wright D, Novaes M, Hewitt N (2013) Techno-economic assessment of biofuel development by anaerobic digestion of European marine cold-water seaweeds. Bioresour Technol 135:120–127

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energ Combust 31:171–192

    Article  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  CAS  Google Scholar 

  • Enzing C (2012) Algae and genetic modification, Research, production and risks. Technopolis Groups, www.technopolis-group.com Accessed 10 May 2017

  • Esquivel-Hernández DA, Ibarra-Garza IP, Rodríguez-Rodríguez J, Cuéllar-Bermúdez SP, Rostro-Alanis MJ, Alemán-Nava GS, García-Pérez JS, Parra-Saldívar R (2017) Green extraction technologies for high-value metabolites from algae: a review. Biofuels Bioprod Biorefin 11:215–231

    Article  CAS  Google Scholar 

  • European Union (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms.http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32001L0018. Accessed 10 May 2017

  • European Union (2009) Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms. http://eur-lex.europa. eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:125:0075:0097:EN:PDF. Accessed 10 May 2017

  • Fabrowska J, Łęska B, Schroeder G (2015a) Freshwater Cladophora glomerata as a new potential cosmetic raw material. Chemik 69:491–497

    CAS  Google Scholar 

  • Fabrowska J, Łęska B, Schroeder G, Messyasz B, Pikosz M (2015b) Biomass and extracts of Algae as material for cosmetics. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 681–706

    Google Scholar 

  • Fabrowska J, Ibañez E, Łęska B, Herrero M (2016) Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res 19:237–245

    Article  Google Scholar 

  • Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2011) Life-cycle analysis of algal lipid fuels with the greet model. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Oak Ridge

    Google Scholar 

  • Frank E, Elgowainy A, Han J, Wang Z (2013) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitigat Adapt Strat Glob Chang 18:137–158

    Article  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transestryfication of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Yu Y, Wu H (2013) Life cycle energy and carbon footprints of microalgal biodiesel production in Western Australia: a comparison of byproducts utilization strategies. ACS Sustain Chem Eng 1:1371–1380

    Article  CAS  Google Scholar 

  • Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev 54:473–481

    Article  CAS  Google Scholar 

  • Glas DJ (2015) Government regulation of the uses of genetically modified Algae and other microorganisms in biofuel and bio-based chemical production. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal biorefineries, products and refinery design, vol 2. Springer, International Publishing, Cham, pp 23–61

    Chapter  Google Scholar 

  • Gnansounou E, Raman JK (2016) Life cycle assessment of algae biodiesel and its co-products. Appl Energy 161:300–308

    Article  CAS  Google Scholar 

  • Godlewska K, Michalak I, Tuhy Ł, Chojnacka K (2016) Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res Int 2016:5973760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górka B, Kucab K, Lipok J, Wieczorek PP (2016) Biologically active compounds in Algae and their application in plant growth stimulation. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans, Animals and Plants. Nova Science Publishers Inc, New York, pp 101–128

    Google Scholar 

  • Goto M, Wahyudiono KH, Siti M (2015) Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids 96:245–251

    Article  CAS  Google Scholar 

  • Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311

    Article  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Azlanansau J, Ravindra P (2016) A review on thirde generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102:5800–5807

    Article  CAS  PubMed  Google Scholar 

  • Kothari R, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev 12:553–563

    Article  CAS  Google Scholar 

  • Kozłowski K, Rój E, Dobrzyńska-Inger A, Kostrzewa D (2016) The analysis of Technical and Economic (TEA) aspects of natural raw materials extraction with supercritical carbon dioxide. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans, animals and plants. Nova Science Publishers Inc, New York, pp 43–72

    Google Scholar 

  • Kumar S (2015) GM Algae for biofuel production: biosafety and risk assessment. Coll Biosaf Rev 9:52–75

    Google Scholar 

  • Li Y, Naghdi FG, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories 13:14. https://doi.org/10.1186/1475-2859-13-14.13-14

    Article  Google Scholar 

  • Liu X, Saydah B, Eranki P, Colosi LM, Greg Mitchell B, Rhodes J, Clarens AF (2013) Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresour Technol 148:63–71

    Google Scholar 

  • Madugu F, Collu M (2016) Parametric analysis for an algal oil production process. Int J Energy Prod Mgmt 1:141–154

    Article  Google Scholar 

  • Malik A, Lenzen M, Ralph PJ, Tamburic B (2015) Hybrid life-cycle assessment of algal biofuel production. Bioresour Technol 184:436–443

    Article  CAS  PubMed  Google Scholar 

  • Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Messyasz B, Łęska B, Fabrowska J, Pikosz M, Cieslak A, Schroeder G (2015a) Effects of organic compounds on the macroalgae culture of Aegagropila linnaei. Open Chem 13:1040–1044

    CAS  Google Scholar 

  • Messyasz B, Łęska B, Fabrowska J, Pikosz M, Roj E, Cieslak A, Schroeder G (2015b) Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem 13:1108–1118

    CAS  Google Scholar 

  • Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14:581–591

    Article  CAS  Google Scholar 

  • Michalak I, Tuhy Ł, Chojnacka K (2015) Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem 13:1183–1195

    CAS  Google Scholar 

  • Michalak I, Chojnacka K (2016a) The potential usefulness of a new generation of agro-products based on raw materials of biological origin. Acta Sci Pol Hortorum Cultus 15:97–120

    Google Scholar 

  • Michalak I, Chojnacka K (2016b) Innovative technology of Algal extracts obtained by supercritical fluid extraction useful in the products for plants, animals and human. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans. Animals and Plants. Nova Science Publishers Inc, New York, pp 1–28

    Google Scholar 

  • Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, Messyasz B, Wilk R, Schroeder G, Dobrzyńska-Inger A, Chojnacka K (2016a) Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur J Phycol 51:243–252

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Dmytryk A, Wilk R, Gramza M, Rój E (2016b) Evaluation of supercritical extracts of Algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalak I, Chojnacka K, Saeid A (2017) Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 Algal extracts. Molecules 22:66. https://doi.org/10.3390/molecules22010066

    Article  CAS  Google Scholar 

  • Minister of Agriculture (2005) 13 January 2005 on the category of feed materials) (Journal of Laws 25 January 2005) Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and Council Regulation (EC) No 1831/2003 and repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC

    Google Scholar 

  • Molina GE, Acien F, Garcia CF, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  Google Scholar 

  • Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123

    Article  Google Scholar 

  • Oil seed crops, Food and Energy (2016) http://www.oilseedcrops.org/algae/. Accessed 10 May 2017

  • Oilgae (2016) http://www.oilgae.com/non_fuel_products/non_fuel_products_from_algae.html. Accessed 10 May 2017

  • Passell H, Dhaliwal H, Reno M, Wu B, Amotz AB, Ivry E, Gay M, Czartoski T, Laurin L, Ayer N (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manage 129:103–111

    Article  CAS  PubMed  Google Scholar 

  • Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  • Pharmaceutical law (2001) Polish Pharmaceutical Law. J Laws, No. 53 pos. 533, 6 September 2001

    Google Scholar 

  • Pikosz M, Messyasz B, Gąbka M (2017) Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland. Ecol Indic 74:1–9

    Article  CAS  Google Scholar 

  • Ponnusamy S, Reddy HK, Muppaneni T, Downes CM, Deng S (2014) Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresour Technol 170:454–461

    Article  CAS  PubMed  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels – a process view. J Biotechnol 142:64–69

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors production systems for phototrophic microorganisms. Appl Microbal Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Quinn JC, Ryan D (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  PubMed  Google Scholar 

  • Quinn JC, Smith TG, Downes CM, Quinn C (2014) Microalgae to biofuels lifecycle assessment-multiple pathway evaluation. Algal Res 4:16–22

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of Algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Renaud SM, Van Thinh L, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Report of the United Nations Conference on Environment and Development (1992) Rio de Janeiro, 3–14 June 1992 (United Nations publication, Sales No. E.93.I.8 and corrigenda), vol. I: Resolutions Adopted by the Conference, resolution 1, annex I

    Google Scholar 

  • Richa K, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev 12:553–563

    Article  CAS  Google Scholar 

  • Rój E, Dobrzyńska-Inger A, Dębczak A, Kostrzewa D, Stępnik K (2015) Algae extract production methods and process optimization. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 101–121

    Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotech 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Ruis JS, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris Dorinde MM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043

    Article  Google Scholar 

  • Saeid A, Chojnacka K (2015) Toward production of microalgae in photobioreactors under temperate climate. Chem Eng Res Des 93:377–391

    Article  CAS  Google Scholar 

  • Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction – a review. J Food Eng 95:240–253

    Article  CAS  Google Scholar 

  • Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:722–727

    Article  Google Scholar 

  • Schroeder G, Leska B, Messyasz B, Pikosz M, Fabrowska J (2015a) Extraction of macroalgae biomass for cosmetics industry. Przem Chem 94:405–407

    CAS  Google Scholar 

  • Schroeder G, Łęska B, Fabrowska J, Messyasz B, Pikosz M (2015b) Analysis of green algae extract. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 81–99

    Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  • Shirvani T, Yan XY, Inderwildi OR, Edwards PP, King DA (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4:3773–3778

    Article  CAS  Google Scholar 

  • Sho Y, Yuuki K, Hidetaka Y, Kan T, Sousuke I (2017) Development of new carbon resources: production of important chemicals from algal residue. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-00979-y

  • Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Educ Sci Technol A: Energy Sci Res 29:687–700

    CAS  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 53:29–38

    Article  Google Scholar 

  • Snow AA, Smith VH (2012) Genetically engineered Algae for biofuels: a key role for ecologists. Bioscience 62:765–768

    Article  Google Scholar 

  • Sustainable development goals – United Nations (2016) http://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 10 May 2017

  • Taelman SE, Sfez S (2015) Environmental Life Cycle Assessment (LCA) of algae production in North West Europe (NWE), Public Output report of the EnAlgae project, Swansea, December 2015, 1–35, Available online at http://www.enalgae.eu/public-deliverables.htm. Accessed 10 May 2017

  • Thiruvenkadam S, Izhar S, Yoshida H, Danquah MK, Harun R (2015) Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production. Appl Energy 154:815–828

    Article  CAS  Google Scholar 

  • Transforming our word (2015) The 2030 Agenda for sustainable development. United Nations – sustainable development knowledge platform. Retrieved 23 Aug 2015

    Google Scholar 

  • United Nations (2015) Global Sustainable Development Report

  • United Nations Development Programme (2015).World Leaders Adopt Sustainable Development Goals. Retrieved 25 Sept 2015

  • United Nations Official Document (2016). Un Org. Retrieved 2016–10-18

    Google Scholar 

  • Van Boxtel AJB, Perez-Lopez P, Breitmayer E, Slegers PM (2015) The potential of optimized process design to advance LCA performance of algae production systems. Appl Energy 154:1122–1127

    Article  Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race a). Photochemistry 30:2919–2925

    Article  CAS  Google Scholar 

  • Voort MPJ, Vulsteke E, Visser CLM (2015) Marco-economics of Algae products, Public Output report WP2A7.02 of the EnAlgae project. Swansea 2015:1–47

    Google Scholar 

  • Zhang Y, Hu G, Brown RC (2013) Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environ Res Lett 8:025001. https://doi.org/10.1088/1748-9326/8/2/025001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schroeder, G., Messyasz, B., Łęska, B. (2018). Economic Aspects of Algae Biomass Harvesting for Industrial Purposes. The Life-Cycle Assessment of the Product. In: Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I. (eds) Algae Biomass: Characteristics and Applications. Developments in Applied Phycology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-74703-3_12

Download citation

Publish with us

Policies and ethics