Skip to main content

Influence of Noise in Correlation Function Estimates for Operational Modal Analysis

  • Conference paper
  • First Online:
Topics in Modal Analysis & Testing, Volume 9

Abstract

The modal parameters in Operational Modal Analysis (OMA) are often estimated based on non-parametric signatures of the structure’s dynamic response. For time domain OMA methods the non-parametric signatures are often correlation functions (CFs) and the pre-processing step for these methods is thus the estimation of CFs. The present paper demonstrates how measurement noise from sensors and measurement equipment affects the estimated CFs. Furthermore, the influence of the measurement noise on the modal parameter estimates is discussed. It is shown how effects of this noise can easily be avoided by ignoring the first part of the CFs when estimating the modal parameters. This is demonstrated by a theoretical review and on simulated and experimental data. The paper also addresses how to add noise to simulated data, so that it resembles a real-life scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Reasearch Studies, Baldock (2000)

    Google Scholar 

  2. Maia, N.M.M., Silva, J.M.M. (eds.): Theoretical and Experimental Modal Analysis. Research Studies, Taunton (1997)

    Google Scholar 

  3. Allemang, R., Brown, D.: Experimental modal analysis and dynamic component synthesis – volume 3: modal parameter estimation. Technical report, USAF (1987)

    Google Scholar 

  4. Reynders, E.: System identification methods for (operational) modal analysis: review and comparison. Arch. Comput. Meth. Eng. 19, 51–124 (2012)

    Google Scholar 

  5. Lauwagie, T., Van Assche, R., Van der Straeten, J., Heylen, W.: A comparison of experimental, operational, and combined experimental-operational parameter estimation techniques. In: Proceedings of Conference on Noise and Vibration Engineering, Leuven (2006)

    Google Scholar 

  6. Carden, E.P., Mita, A.: Challenges in developing confidence intervals on modal parameters estimated for large civil infrastructure with stochastic subspace identification. Struct. Control Health Monit. 18, 53–78 (2009)

    Google Scholar 

  7. Overschee, P.V., Moor, B.D.: Subspace Identification for Linear Systems. Kluwer Academic Publishers, Boston (1996)

    Google Scholar 

  8. James, G.H., Carne, T.G., Lauffer, J.P.: The natural excitation technique (next) for modal parameter extraction from operating structures. Int. J. Anal. Exp. Modal Anal. 10, 260–277 (1995)

    Google Scholar 

  9. Jenkins, G.M., Watts, D.G.: Spectral Analysis and Its Applications. Holden-Day, San Francisco (1968)

    Google Scholar 

  10. Bendat, J., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Wiley Interscience, New York (1986)

    Google Scholar 

  11. Orlowitz, E., Brandt, A.: Influence of correlation estimation methods on damping estimates. In: Proceedings of 5th International Operational Modal Analysis Conference, Guimaraes (2013)

    Google Scholar 

  12. Priestly, M.B.: Spectral Analysis and Time Series, vol. 1. Academic, London (1981)

    Google Scholar 

  13. Giraldo, D.F., Song, W., Dyke, S.J., Caicedo, J.M.: Modal identification through ambient vibration: comparative study. J. Eng. Mech. 135, 759–770 (2009)

    Google Scholar 

  14. Ott, H.W.: Noise Reduction Techniques in Electronic System. Wiley, Singapore (1988)

    Google Scholar 

  15. Levinzon, F.: Piezoelectric Accelerometers with Integral Electronics. Springer, Cham (2014)

    Google Scholar 

  16. Tondreau, G., Deraemaeker, A.: Numerical and experimental analysis of uncertainty on modal parameters estimated with the stochastic subspace method. J. Sound Vib. 333, 4376–4401 (2014)

    Google Scholar 

  17. Peeters, B., De Roeck, G.: Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13, 855–878 (1999)

    Google Scholar 

  18. Allemang, R.J., Brown, D.L.: A unified matrix polynomial approach to modal identification. J. Sound Vib. 211(3), 301–322 (1998)

    Google Scholar 

  19. Brandt, A.: Noise and Vibration Analysis – Signal Analysis and Experimental Procedures. Wiley, New York (2011)

    Google Scholar 

  20. Pappa, R., Ibrahim, S.: A parametric study of the ibrahim time domain modal identification algorithm. Shock Vib. Bull. 51, 43–72 (1981)

    Google Scholar 

  21. Smallwood, D., Gregory, D.: A rectangular plate is proposed as an ies modal test structure. In: Proceedings of International Modal Analysis IV, Los Angeles (1986)

    Google Scholar 

  22. Orlowitz, E., Brandt, A.: Comparison of experimental and operational modal analysis on a laboratory test plate. Measurement 102(Supplement C), 121–130 (2017)

    Google Scholar 

Download references

Acknowledgements

The work presented has been partly supported by the INTERREG 4 A program in Southern Denmark and Schleswig-K.E.R.N, Germany with funding from the European Fund for Regional Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esben Orlowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orlowitz, E., Brandt, A. (2019). Influence of Noise in Correlation Function Estimates for Operational Modal Analysis. In: Mains, M., Dilworth, B. (eds) Topics in Modal Analysis & Testing, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74700-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74700-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74699-9

  • Online ISBN: 978-3-319-74700-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics