Skip to main content

Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems

  • Conference paper
  • First Online:
Topics in Modal Analysis & Testing, Volume 9

Abstract

Modal analysis is regularly used to compute natural frequencies and mode shapes of structures via eigenvalue solutions in vibration engineering. In this paper, the eigenvalue problem of a 6 degrees of freedom rotating system with gyroscopic effects, including axial, torsional and lateral motion, is investigated using Timoshenko beam theory. The main focus thereby is the investigation of the computational time and the numerical errors in generalized and standard eigenvalue solutions of rotating systems. The finite element method is employed to compute the global stiffness, mass and gyroscopic matrices of the rotating system. The equations of motion is expressed in the state space form to convert the quadratic eigenvalue problem into the generalized and standard forms. The number of elements in the finite element model was varied to investigate the convergence of the natural frequencies and the computational performance of the two eigenvalue solutions. The numerical analyses show that the standard eigenvalue solution is significantly faster than the generalized one with increasing number of elements and the generalized eigenvalue solution can yield wrong solutions when using higher numbers of elements due to the ill-conditioning phenomenon. In this regard, the standard eigenvalue solution gives more reliable results and uses less computational time than the generalized one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, F.C.: Rotor dynamics without equations. Int. J. COMADEM. 10(3), 2–10 (2007)

    Google Scholar 

  2. Friswell, M.I.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  3. Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005)

    Google Scholar 

  4. Rao, J.S.: History of Rotating Machinery Dynamics. Springer Science & Business Media, Dordrecht

    Google Scholar 

  5. Genta, G.: Dynamics of Rotating Systems. Springer Science & Business Media, New York (2007)

    Google Scholar 

  6. Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. A Wiley-Interscience publication, Wiley, Hoboken (2001)

    Google Scholar 

  7. Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Mathods. 123(1), 35–65 (2000)

    Article  MathSciNet  Google Scholar 

  8. Zheng, Z., Ren, G., Williams, F.W.: The eigenvalue problem for damped gyroscopic systems. Int. J. Mech. Sci. 39(6), 741–750 (1997)

    Article  Google Scholar 

  9. Ferng, W.R., Lin, W.-W., Wang, C.-S.: Numerical algorithms for undamped gyroscopic systems. Comput. Math. Appl. 37(1), 49–66 (1999)

    Article  MathSciNet  Google Scholar 

  10. Qian, J., Lin, W.W.: A numerical method for quadratic eigenvalue problems of gyroscopic systems. J. Sound Vib. 306(1–2), 284–296 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kerner, W.: Large-scale complex eigenvalue problems. J. Comput. Phys. 85(1), 1–85 (1989)

    Article  MathSciNet  Google Scholar 

  12. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer-Verlag Berlin Heidelberg, Berlin (2005)

    Google Scholar 

  13. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadelphia (2011)

    Google Scholar 

  14. Bai, Z.: Progress in the numerical solution of the nonsymmetric eigenvalue problem. Numer. Linear. Algebra. Appl. 2(3), 219–234 (1995)

    Article  MathSciNet  Google Scholar 

  15. Anderson, E., et al.: LAPACK: A portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11, New York, USA (1990)

    Google Scholar 

  16. Inman, D.J.: Engineering Vibration, 4rth edn. Pearson, Prentice Hall, London (2008)

    Google Scholar 

  17. Kannan, R., Hendry, S., Higham, N.J., Tisseur, F.: Detecting the causes of ill-conditioning in structural finite element models. Comput. Struct. 133, 79–89 (2014)

    Article  Google Scholar 

  18. Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound Vib. 31(3), 315–330 (1973)

    Article  Google Scholar 

  19. Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793 (1980)

    Article  Google Scholar 

  20. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)

    Article  MathSciNet  Google Scholar 

  21. Berhanu, M.: The Polynomial Eigenvalue Problem, Ph.D. Thesis, University of Manchester, Manchester, UK (2006)

    Google Scholar 

  22. Gutiérrez-Wing, E.S., Ewins D.J.: Modal characterisation of rotating machines. Proceedings of the 19th International Modal Analysis Conference, Orlando, Florida (2001)

    Google Scholar 

  23. Lee, C.: A complex modal testing theory for rotating machinery. Mech. Syst. Signal Process. 5(2), 119–137 (1991)

    Article  Google Scholar 

  24. Bucher, I., Ewins, D.J.: Modal analysis and testing of rotating structures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 61–96 (2001)

    Article  Google Scholar 

  25. Anderson, E., et al.: LAPACK Usersguide: Release 1.0. Argonne National Lab, Chicago, Illinois, USA (1992)

    Google Scholar 

  26. Moler, C.: “Matlab incorporates LAPACK,” Increasing the speed and capabilities of matrix computation. MATLAB News & Notes–Winter (2000)

    Google Scholar 

  27. Bucher, I.: RotFE 2.1 The finite element rotor analysis package. Faculty of mechanical Engineering, Technion, Haifa, Israel (2000)

    Google Scholar 

  28. Genta, G., Bassani, D., Delprete, C.: DYNROT: A Matlab Toolbox for Rotordynamics Analysis, Polytechnic University of Turin, Turin, Italy (1994)

    MATH  Google Scholar 

  29. Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines Rotordynamics Software Manual, pp. 1–19. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  30. Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012)

    Article  Google Scholar 

  31. Ewins, D.J.: Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock, (2000)

    Google Scholar 

Download references

Acknowledgment

This study was funded by Republic of Turkey, Ministry of National Education. The authors are grateful to the Turkish Government for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tatar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tatar, A., Salles, L., Haslam, A.H., Schwingshackl, C.W. (2019). Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems. In: Mains, M., Dilworth, B. (eds) Topics in Modal Analysis & Testing, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74700-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74700-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74699-9

  • Online ISBN: 978-3-319-74700-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics