Complements of Higher Mathematics pp 53-87 | Cite as
Special Functions
Chapter
First Online:
- 563 Downloads
Abstract
Consider the semi-plane \(\Delta _0=\{z\in C,\;z=x+iy:x>0\}\). The complex function \(\Gamma :\Delta _0\rightarrow C\) defined by is called the Euler’s function of first species.
$$ \Gamma (z)=\int \limits _{0}^{\infty }t^{z-1}e^{-t}\mathrm {d}t, $$
Copyright information
© Springer International Publishing AG 2018