Skip to main content

On Fuzzy Generalizations of Concept Lattices

  • Chapter
  • First Online:
Interactions Between Computational Intelligence and Mathematics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 758))

Abstract

We provide an overview of different generalizations of formal concept analysis based on Fuzzy logic. Firstly, we recall a common platform for early fuzzy approaches and then, we deal with the data heterogeneity and its various extensions. A second-order formal context makes a bridge between the early fuzzy extensions and the heterogeneous frameworks. A second-order formal context is based on the bonds in L-fuzzy generalization. We present the connections between the related approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalde, C., Burusco, A., Fuentes-González, R., Zubia, I.: The use of linguistic variables and fuzzy propositions in the \(L\)-fuzzy concept theory. Comput. Math. Appl. 62(8), 3111–3122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alcalde, C., Burusco, A., Fuentes-González, R.: Application of the \(L\)-fuzzy concept analysis in the morphological image and signal processing. Ann. Math. Artif. Intell. 72(1–2), 115–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoni, L., Guniš, J., Krajči, S., Krídlo, O., Šnajder, L.: The educational tasks and objectives system within a formal context. In: Bertet, K., Rudolph, S. (eds.) CLA 2014. CEUR Workshop Proceedings, vol. 1252, pp. 35–46. CEUR-WS.org (2014)

    Google Scholar 

  4. Antoni, L., Krajči, S., Krídlo, O.: On different types of heterogeneous formal contexts. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology, pp. 302–309. Atlantis Press (2013)

    Google Scholar 

  5. Antoni, L., Krajči, S., Krídlo, O.: Randomized fuzzy formal contexts and relevance of one-sided concepts. In: Baixeries, J., Sacarea, Ch. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113. Springer, Heidelberg (2015)

    Google Scholar 

  6. Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: Relationship between two FCA approaches on heterogeneous formal contexts. In: Szathmary, L., Priss, U. (eds.) CLA 2012. CEUR Workshop Proceedings, vol. 972, pp. 93–102. CEUR-WS.org (2012)

    Google Scholar 

  7. Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: On heterogeneous formal contexts. Fuzzy Sets Syst. 234, 22–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnauld, A., Nicole, P.: Logic, or the Art of Thinking. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  9. Barbut, M., Monjardet, B.: Ordre et classification. Algbre et combinatoire. Collection Hachette Universit, Librairie Hachette (1970)

    Google Scholar 

  10. Bartl, E.: Minimal solutions of generalized fuzzy relational equations: probabilistic algorithm based on greedy approach. Fuzzy Sets Syst. 260, 25–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bělohlávek, R.: Lattices generated by binary fuzzy relations. Tatra Mt. Math. Publ. 16, 11–19 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Bělohlávek, R.: Fuzzy galois connections. Math. Logic Q. 45(4), 497–504 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bělohlávek, R.: Reduction and a simple proof of characterization of fuzzy concept lattices. Fundam. Informaticae 46(4), 277–285 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bělohlávek, R.: What is fuzzy concept lattice? II. In: Kuznetsov, S.O., Slezak, D., Hepting, D.H., Mirkin, B.G. (eds.) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Bělohlávek, R.: Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences. Fuzzy Sets Syst. 197, 45–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bělohlávek, R.: Ordinally equivalent data: a measurement-theoretic look at formal concept analysis of fuzzy attributes. Int. J. Approx. Reason. 54(9), 1496–1506 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bělohlávek, R., De Baets, B., Konečný, J.: Granularity of attributes in formal concept analysis. Inf. Sci. 260, 149–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bělohlávek, R., Klir, G.J.: Concepts and Fuzzy Logic. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  20. Bělohlávek, R., Sigmund, E., Zacpal, J.: Evaluation of IPAQ questionnaires supported by formal concept analysis. Inf. Sci. 181(10), 1774–1786 (2011)

    Article  MathSciNet  Google Scholar 

  21. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005)

    Google Scholar 

  22. Bělohlávek, R., Trnečka, M.: Basic level of concepts in formal concept analysis. In: Domenach, F., Ignatov, D., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 28–44. Springer, Heidelberg (2012)

    Google Scholar 

  23. Bělohlávek, R., Trnečka, M.: Basic Level in Formal Concept Analysis: Interesting Concepts and Psychological Ramifications. In: Rossi, F. (eds.) IJCAI 2013, pp. 1233–1239. AAAI Press (2013)

    Google Scholar 

  24. Bělohlávek, R., Vychodil, V.: What is fuzzy concept lattice?. In: Bělohlávek, R., Snášel, V. (eds.) CLA 2005. CEUR Workshop Proceedings, vol. 162, pp. 34–45. CEUR-WS.org (2005)

    Google Scholar 

  25. Bělohlávek, R., Vychodil, V.: Fuzzy concept lattices constrained by hedges. J. Adv. Comput. Intell. Intell. Inform. 11(6), 536–545 (2007)

    Article  Google Scholar 

  26. Bělohlávek, R., Vychodil, V.: Formal concept analysis and linguistic hedges. Int. J. Gen. Syst. 41(5), 503–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ben Yahia, S., Jaoua, A.,: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence. Studies in Fuzziness and Soft Computing, vol. 68, pp. 167–190. Physica-Verlag, Heidelberg (2001)

    Google Scholar 

  28. Burusco, A., Fuentes-González, R.: The study of \(L\)-fuzzy concept lattice. Mathw. Soft Comput. 3, 209–218 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Butka, P., Pócs, J.: Generalization of one-sided concept lattices. Comput. Inform. 32(2), 355–370 (2013)

    MathSciNet  Google Scholar 

  30. Butka, P., Pócs, J., Pócsová, J.: Representation of fuzzy concept lattices in the framework of classical FCA. J. Appl. Math. 2013, Article ID 236725, 7 pages. (2013)

    Google Scholar 

  31. Butka, P., Pócs, J., Pócsová, J.: On equivalence of conceptual scaling and generalized one-sided concept lattices. Inf. Sci. 259, 57–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Butka, P., Pócs, J., Pócsová, J.: Reduction of concepts from generalized one-sided concept lattice based on subsets quality measure. In: Zgrzywa, A., Choros, A., Sieminski, A. (eds.) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol. 314, pp. 101–111. Springer (2015)

    Google Scholar 

  33. Cabrera, I.P., Cordero, P., Gutiérez, G., Martinez, J., Ojeda-Aciego, M.: On residuation in multilattices: filters, congruences, and homorphisms. Fuzzy Sets Syst. 234, 1–21 (2014)

    Article  MATH  Google Scholar 

  34. Carpineto, C., Romano, G.: Concept Data Analysis. Wiley, Theory and Applications. J (2004)

    Google Scholar 

  35. Cellier, P., Ferré, S., Ridoux, O., Ducassé, M.: A parameterized algorithm to explore formal contexts with a taxonomy. Int. J. Found. of Comput. Sci. 2, 319–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Attribute and size reduction mechanisms in multi-adjoint concept lattices. J. Comput. Appl. Math. 318, 388–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: A comparative study of adjoint triples. Fuzzy Sets Syst. 211, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Adjoint negations, more than residuated negations. Inf. Sci. 345, 355–371 (2016)

    Article  MathSciNet  Google Scholar 

  39. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  40. Dias, S.M., Vieira, N.J.: Concept lattices reduction: Definition, analysis and classification. In: Expert Syst. Appl., https://doi.org/10.1016/j.eswa.2015.04.044

  41. Diáz-Moreno, J.C., Medina, J., Ojeda-Aciego, M.: On basic conditions to generate multi-adjoint concept lattices via Galois connections. Int. J. Gen. Syst. 43(2), 149–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dubois, D., Prade, H.: Possibility theory and formal concept analysis: Characterizing independent sub-contexts. Fuzzy Sets Syst. 196, 4–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Frič, R., Papčo, M.: A categorical approach to probability theory. Stud. Logica 94(2), 215–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS, vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Google Scholar 

  45. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  46. Garciá-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez-Sanchez, F.J.: On the definition of suitable orderings to generate adjunctions over an unstructured codomain. Inf. Sci. 286, 173–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Georgescu, G., Popescu, A.: Concept lattices and similarity in non-commutative fuzzy logic. Fundamenta Informaticae 53(1), 23–54 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Halaš, R., Mesiar, R., Pócs, J.: Description of sup- and inf-preserving aggregation functions via families of clusters in data tables, Inf. Sci., to appear. https://doi.org/10.1016/j.ins.2017.02.060

  49. Halaš, R., Pócs, J.: Generalized one-sided concept lattices with attribute preferences. Inf. Sci. 303, 50–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kardoš, F., Pócs, J., Pócsova, J.: On concept reduction based on some graph properties. Knowl.-Based Syst. 93, 67–74 (2016)

    Article  Google Scholar 

  51. Kiseliová, T., Krajči, S.: Generation of representative symptoms based on fuzzy concept lattices. Adv. Soft Computing 33, 349–354 (2005)

    Article  Google Scholar 

  52. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 255–266. Springer, Heidelberg (2010)

    Google Scholar 

  53. Konečný, J.: Isotone fuzzy Galois connections with hedges. Inf. Sci. 181, 1804–1817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Konečný, J., Medina, J., Ojeda-Aciego, M.: Multi-adjoint concept lattices with heterogeneous conjunctors and hedges. Ann. Math. Artif. Intell. 72(1–2), 73–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Konečný, J., Osička, P.: Triadic concept lattices in the framework of aggregation structures. Inf. Sci. 279, 512–527 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Netw. World 13(5), 521–530 (2003)

    Google Scholar 

  57. Krajči, S.: The basic theorem on generalized concept lattice. In Bělohlávek R., Snášel V. (eds.) CLA 2004. CEUR Workshop Proceedings, vol. 110, pp. 25–33. CEUR-WS.org (2004)

    Google Scholar 

  58. Krajči, S.: A generalized concept lattice. Log. J. IGPL 13(5), 543–550 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Krajči, S.: Every concept lattice with hedges is isomorphic to some generalized concept lattice. In Bělohlávek R., Snášel V. (eds.) CLA 2005. CEUR Workshop Proceedings, vol. 162, pp. 1–9. CEUR-WS.org (2005)

    Google Scholar 

  60. Krajči, S.: Social Network and Formal Concept Analysis. In: Pedrycz, W., Chen, S.M. (eds.) Social Networks: A framework of Computational Intelligence. Studies in Computational Intelligence, vol 526, pp. 41–62. Springer (2014)

    Google Scholar 

  61. Krajči, S., Krajčiová, J.: Social network and one-sided fuzzy concept lattices. In: Spyropoulos, C. (eds.) Fuzz-IEEE 2007. Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–6. IEEE Press (2007)

    Google Scholar 

  62. Krídlo, O., Krajči, S., Antoni, L.: Formal concept analysis of higher order. Int. J. Gen. Syst. 45(2), 116–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Krídlo, O., Krajči, S., Ojeda-Aciego, M.: The category of \(L\)-Chu correspondences and the structure of \(L\)-bonds. Fund. Inform. 115(4), 297–325 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Krídlo, O., Ojeda-Aciego, M.: On L-fuzzy Chu correspondences. Int. J. Comput. Math. 88(9), 1808–1818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Krídlo, O., Ojeda-Aciego, M.: Revising the link between \(L\)-Chu correspondences and completely lattice \(L\)-ordered sets. Ann. Math. Artif. Intell. 72(1–2), 91–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Krupka, M.: On complexity reduction of concept lattices: three counterexamples. Inf. Retr. 15(2), 151–156 (2012)

    Article  MathSciNet  Google Scholar 

  67. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49, 101–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kwuida, L., Missaoui, R., Ben Amor, B., Boumedjout, L., Vaillancourt, J.: Restrictions on concept lattices for pattern management. In: Kryszkiewicz, M., Obiedkov, S. (eds.) CLA 2010. CEUR Workshop Proceedings, vol. 672, pp. 235–246. CEUR-WS.org (2010)

    Google Scholar 

  69. Medina, J., Ojeda-Aciego, M.: Multi-adjoint t-concept lattices. Inf. Sci. 180(5), 712–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Medina, J., Ojeda-Aciego, M.: On multi-adjoint concept lattices based on heterogeneous conjunctors. Fuzzy Sets Syst. 208, 95–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Medina, J., Ojeda-Aciego, M.: Dual multi-adjoint concept lattices. Inf. Sci. 225, 47–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Medina, J., Ojeda-Aciego, M., Pócs, J., Ramiréz-Poussa, E.: On the Dedekind-MacNeille completion and formal concept analysis based on multilattices. Fuzzy Sets Syst. 303, 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: On multi-adjoint concept lattices: definition and representation theorem. Lect. Notes Artif. Intell 4390, 197–209 (2007)

    MATH  Google Scholar 

  74. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Relating generalized concept lattices and concept lattices for non-commutative conjunctors. Appl. Math. Lett. 21, 1296–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Medina, J., Ojeda-Aciego, M., Valverde, A., Vojtáš, P.: Towards biresiduated multi-adjoint logic programming. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA-TTIA 2003. LNCS (LNAI), vol. 3040, pp. 608–617. Springer, Heidelberg (2004)

    Google Scholar 

  77. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Ore, Ø.: Galois connexions. Trans. Am. Mathe. Soc. 55, 493–513 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  79. Pócs, J.: Note on generating fuzzy concept lattices via Galois connections. Inf. Sci. 185(1), 128–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Pócs, J.: On possible generalization of fuzzy concept lattices using dually isomorphic retracts. Inf. Sci. 210, 89–98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. Pócs, J., Pócsová, J.: On some general aspects of forming fuzzy concept lattices. Appl. Math. Sci. 7(112), 5559–5605 (2013)

    MathSciNet  Google Scholar 

  82. Poelmans, J., Dedene, G., Verheyden, G., Van der Mussele, H., Viaene, S., Peters, E.: Combining business process and data discovery techniques for analyzing and improving integrated care pathways. In: Perner, P. (ed.) ICDM 2010, pp. 505–517. Springer-Verlag, Berlin Heidelberg (2010)

    Google Scholar 

  83. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)

    Article  Google Scholar 

  84. Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst. Appl. 40, 6601–6623 (2013)

    Article  Google Scholar 

  85. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  86. Popescu, A.: A general approach to fuzzy concepts. Math. Logic Quart. 50(3), 265–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  87. Priss, U.: Using FCA to Analyse How Students Learn to Program. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 216–227. Springer, Heidelberg (2013)

    Google Scholar 

  88. Singh, P.K., Kumar, ChA: Bipolar fuzzy graph representation of concept lattice. Inf. Sci. 288, 437–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Singh, P.K., Kumar, ChA: A note on bipolar fuzzy graph representation of concept lattice. Int. J. Comp. Sci. Math. 5(4), 381–393 (2014)

    Article  MathSciNet  Google Scholar 

  90. Skřivánek, V., Frič, R.: Generalized random events. Int. J. Theor. Phys. 54, 4386–4396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  91. Snášel, V., Duráková, D., Krajči, S., Vojtáš, P.: Merging concept lattices of \(\alpha \)-cuts of fuzzy contexts. Contrib. Gen. Algebra 14, 155–166 (2004)

    MathSciNet  MATH  Google Scholar 

  92. Valverde-Albacete, F.J., Peláez-Moreno, C.: Towards a generalisation of formal concept analysis for data mining purposes. In: Missaoui, R., Schmid, J. (eds.) ICFCA 2006. LNCS, vol. 3874, pp. 161–176. Springer, Heidelberg (2006)

    Google Scholar 

  93. Valverde-Albacete, F.J., Peláez-Moreno, C.: Extending conceptualisation modes for generalised formal concept analysis. Inf. Sci. 181, 1888–1909 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dodrecht-Boston (1982)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript and their many fruitful comments and suggestions. This work was partially supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences under the contract VEGA 1/0073/15 and by the Slovak Research and Development Agency under the contract No. APVV–15–0091. This work was partially supported by the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU under the project Center of knowledge and information systems in Košice, CeZIS, ITMS: 26220220158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Antoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antoni, L., Krajči, S., Krídlo, O. (2018). On Fuzzy Generalizations of Concept Lattices. In: Kóczy, L., Medina, J. (eds) Interactions Between Computational Intelligence and Mathematics. Studies in Computational Intelligence, vol 758. Springer, Cham. https://doi.org/10.1007/978-3-319-74681-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74681-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74680-7

  • Online ISBN: 978-3-319-74681-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics