Advertisement

Team DRC-Hubo@UNLV in 2015 DARPA Robotics Challenge Finals

  • Paul Oh
  • Kiwon Sohn
  • Giho Jang
  • Youngbum Jun
  • Donghyun Ahn
  • Juseong Shin
  • Baek-Kyu Cho
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

This chapter presents a technical overview of Team DRC-Hubo@UNLVs approach to the 2015 DARPA Robotics Challenge Finals (DRC-Finals). The Finals required a robotic platform that was robust and reliable in both hardware and software to complete tasks in 60 min under degraded communication. With this point of view, Team DRC-Hubo@UNLV integrated methods and algorithms previously verified, validated, and widely used in the robotics community. For the communication aspect, a common shared memory approach that the team adopted to enable efficient data communication under the DARPA controlled network is described. A new perception head design (optimized for the tasks of the Finals) and its data processing are then presented. In the motion planning and control aspect, various techniques, such as wheel-driven navigation, zero-moment point (ZMP)-based locomotion, and position-based manipulation and controls, are described in this chapter. By introducing strategically critical elements and key lessons learned from DRC-Trials 2013 and the testbed of Charleston, we also illustrate how DRC-Hubo has evolved successfully toward the DRC-Finals.

Notes

Acknowledgements

The authors gratefully acknowledge the contribution of Kaist-Hubo Lab, Kwangwoo Lee, Pareshkumar Brahmbhatt, Praxis Aerospace, University of Delaware, Ohio State University, Swarthmore College, Georgia Tech, Purdue University, Columbia University, Worcester Polytechnic Institute, Indiana University and Drexel University.

References

  1. Ahn, D., Shin, J., Jun, Y., Sohn, K., Jang, G., Oh, P., et al. (2016). Strategies for driving and egress for the vehicle of a humanoid robot in the DRC finals 2015. Institute of Control, Robotics and Systems, 22(11), 912–918.Google Scholar
  2. Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., et al. (2005). Development of humanoid robotHRP-3P. In 2005 5th IEEE-RAS International Conference on Humanoid Robots (pp. 50–55). IEEE.Google Scholar
  3. Alunni, N., Bener Suay, H., Phillips-Grafflin, C., Mainprice, J., Berenson, D., Chernova, S., et al. (2014). DARPA Robotics Challenge: Towards a userguided manipulation framework for high-DOF robots. In IEEE International Conference on Robotics and Automation (ICRA) (p. 2088).Google Scholar
  4. Alunni, N., Phillips-Grafftin, C., Suay, H. B., Lofaro, D., Berenson, D., Chernova, S., et al. (2013). Toward a user-guided manipulation framework for high-DOF robots with limited communication. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  5. Behnke, S., Schwarz, M., Rodehutskors, T., Droeschel, D., Schreiber, M., Topelidou-Kyniazopoulou, A., et al. (2015). Team NimbRo Rescue at DARPA Robotics Challenge Finals. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (p. 554).Google Scholar
  6. Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19), 16.Google Scholar
  7. Cisneros, R., Kajita, S., Sakaguchi, T., Nakaoka, S., Morisawa, M., Kaneko, K., et al. (2015). Task-level teleoperated manipulation for the HRP-2Kai humanoid robot. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1102–1108).Google Scholar
  8. Cousins, S. (2010). ROS on the PR2 [ROS topics]. IEEE Robotics and Automation Magazine, 17(3), 23–25.CrossRefGoogle Scholar
  9. Dang, H., Jun, Y., Oh, P., & Allen, P. K. (2013). Planning complex physical tasks for disaster response with a humanoid robot. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  10. DARPA. (2012). Tactical Technology Office, DARPA. Retrieved from http://www.darpa.mil.
  11. DARPA. (2015a). DARPA Robotics Challenge Finals 2015. Retrieved from http://www.theroboticschallenge.org.
  12. DARPA. (2015b). DRC Finals Rule Book. Retrieved from, http://www.theroboticschallenge.org.
  13. DeDonato, M., Dimitrov, V., Du, R., Giovacchini, R., Knoedler, K., Long, X., et al. (2015). Human-in-the-loop control of a humanoid robot for disaster response: A report from the DARPA Robotics Challenge Trials. Journal of Field Robotics, 32(2), 275–292.CrossRefGoogle Scholar
  14. Ellenberg, R. W., & Oh, P. Y. (2014). Contact wrench space stability estimation for humanoid robots. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  15. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). Anarchitecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.CrossRefGoogle Scholar
  16. Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2015). Optimization-based full body control for the DARPA robotics challenge. Journal of Field Robotics, 32(2), 293–312.CrossRefGoogle Scholar
  17. Geiger, A., Ziegles, J., & Stiller, C. (2011). StreoScan: Dense 3D reconstruction in real-time. In Intelligent Vehicles Symposium (IV).Google Scholar
  18. Grey, M. X., Dantam, N., Lofaro, D. M., Bobick, A., Egerstedt, M., Oh, P., et al. (2013). Multi-process control software for HUBO2Plus robot. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  19. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulation-design and algorithms of RoboSimian. Journal of Field Robotics, 32(2), 255–274.CrossRefGoogle Scholar
  20. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned fromthe DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.CrossRefGoogle Scholar
  21. Jun, Y., Ellenberg, R., & Oh, P. (2010). Realization of miniature humanoid for obstacle avoidance with real-time ZMP preview control used for full-sized humanoid. In IEEERAS International Conference on Humanoid Robots (Humanoids) (pp. 46–51). IEEE.Google Scholar
  22. Jun, Y., & Oh, P. (2011). A 3-tier infrastructure: Virtual-, mini-, online-hubo stair climbing as a case study. In Proceeding Biomechanics and Robotics (p. 752). ACTA Press.Google Scholar
  23. Jun, Y., Weisz, J., Rasmussen, C., Allen, P., & Oh, P. (2014). Realtime teleop with non-prehensile manipulation. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  24. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation (ICRA) (Vol. 2, pp. 1620–1626).Google Scholar
  25. Knoedler, K., Dimitrov, V., Conn, D., Gennert, M. A., & Padir, T. (2015). Towards supervisory control of humanoid robots for driving vehicles during disaster response missions. In 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  26. McGill, S., Yi, S.-J., & Lee, D. D. (2015). Team THOR’s adaptive autonomy for disaster response humanoids. In 2015 IEEERAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 453–460).Google Scholar
  27. Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2011). A human-like walking for the COmpliant huMANoid COMAN based on CoM trajectory reconstruction from kinematic Motion Primitives. In 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 364–370). IEEE.Google Scholar
  28. Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108(3), 163–171.CrossRefGoogle Scholar
  29. O’Flaherty, R., Vieira, P., Grey, M. X., Oh, P., Bobick, A., Egerstedt, M., et al. (2013). Humanoid robot teleoperation for tasks with power tools. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  30. Park, I.-W., Kim, J.-Y., Lee, J., & Oh, J.-H. (2005). Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In 2005 5th IEEE-RAS International Conference on Humanoid Robots (pp. 321–326). IEEE.Google Scholar
  31. Pratt, G., & Manzo, J. (2013). The DARPA Robotics Challenge [Competitions]. IEEE Robotics Automation Magazine, 20(2), 10–12.CrossRefGoogle Scholar
  32. Rasmussen, C., Sohn, K., Wang, Q., & Oh, P. (2014a). Perception and control strategies for driving utility vehicles with a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 973–980).Google Scholar
  33. Rasmussen, C., Sohn, K., Yuvraj, K., & Oh, P. (2014b). Early phases of humanoid vehicle ingress using depth cameras. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  34. Rasmussen, C., Yuvraj, K., Vallett, R., Sohn, K., & Oh, P. (2014c). Towards functional labeling of utility vehicle point clouds for humanoid driving. Intelligent Service Robotics, 7(3), 133–143.CrossRefGoogle Scholar
  35. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration. In 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 3, pp. 2478–2483). IEEE.Google Scholar
  36. Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 32(2), 209–228.CrossRefGoogle Scholar
  37. Wang, H., Zheng, Y. F., Jun, Y., & Oh, P. (2014). DRC-hubowalking on rough terrains. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  38. Weinstein, A. J., & Moore, K. L. (2010). Pose estimation of Ackerman steering vehicles for outdoors autonomous navigation. In IEEE International Conference on Industrial Technology (ICIT) (pp. 579–584).Google Scholar
  39. Yi, S.-J., McGill, S., Vadakedathu, L., He, Q., Ha, I., Han, J., et al. (2014). THOROP humanoid robot for DARPA Robotics Challenge Trials 2013. In 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (pp. 359–363). IEEE.Google Scholar
  40. Zhang, Y., Luo, J., Hauser, K., Ellenberg, R., Oh, P., Park, H.A., et al. (2013). Motion planning of ladder climbing for humanoid robots. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  41. Zheng, Y. F., Wang, H., Li, S., Liu, Y., Orin, D., Sohn, K., et al. (2013). Humanoid robots walking on grass, sands and rocks. In IEEE Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–6).Google Scholar
  42. Zucker, M., Jun, Y., Killen, B., Kim, T.-G., & Oh, P. (2013). Continuous trajectory optimization for autonomous humanoid door opening. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–5).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paul Oh
    • 1
  • Kiwon Sohn
    • 2
  • Giho Jang
    • 1
  • Youngbum Jun
    • 1
  • Donghyun Ahn
    • 3
  • Juseong Shin
    • 3
  • Baek-Kyu Cho
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of NevadaLas VegasUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of HartfordWest HartfordUSA
  3. 3.School of Mechanical Systems EngineeringKookmin UniversitySeoulSouth Korea

Personalised recommendations