Advertisement

Team VALOR’s ESCHER: A Novel Electromechanical Biped for the DARPA Robotics Challenge

  • Coleman Knabe
  • Robert Griffin
  • James Burton
  • Graham Cantor-Cooke
  • Lakshitha Dantanarayana
  • Graham Day
  • Oliver Ebeling-Koning
  • Eric Hahn
  • Michael Hopkins
  • Jordan Neal
  • Jackson Newton
  • Chris Nogales
  • Viktor Orekhov
  • John Peterson
  • Michael Rouleau
  • John Seminatore
  • Yoonchang Sung
  • Jacob Webb
  • Nikolaus Wittenstein
  • Jason Ziglar
  • Alexander Leonessa
  • Brian Lattimer
  • Tomonari Furukawa
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

The Electric Series Compliant Humanoid for Emergency Response (ESCHER) platform represents the culmination of four years of development at Virginia Tech to produce a full sized force controlled humanoid robot capable of operating in unstructured environments. ESCHER’s locomotion capability was demonstrated at the DARPA Robotics Challenge (DRC) Finals when it successfully navigated the 61 m loose dirt course. Team VALOR, a Track A team, developed ESCHER leveraging and improving upon bipedal humanoid technologies implemented in previous research efforts, specifically for traversing uneven terrain and sustained untethered operation. This paper presents the hardware platform, software, and control systems developed to field ESCHER at the DRC Finals. ESCHER’s unique features include custom linear series elastic actuators (SEAs) in both single and dual actuator configurations and a whole-body control framework supporting compliant locomotion across variable and shifting terrain. A high-level software system designed using the Robot Operating System (ROS) integrated various open-source packages and interfaced with the existing whole-body motion controller. The paper discusses a detailed analysis of challenges encountered during the competition, along with lessons learned critical for transitioning research contributions to a fielded robot. Empirical data collected before, during, and after the DRC Finals validates ESCHER’s performance in fielded environments.

Notes

Acknowledgements

This material is supported by ONR through grant N00014-11-1-0074 and by DARPA through grant N65236-12-1-1002. We would like to thank Virginia Tech’s Department of Engineering for providing support through student funding and travel compensation. We would also like to thank the following people: the members of Team ViGIR for their collaboration, especially David Conner, Stefan Kohlbrecher, and Ben Waxler for taking time to help with documenting and debugging; Derek Lahr, Bryce Lee, Steve Ressler, Joe Holler, and all of the TREC undergraduate volunteers, without whose help design, assembly, and testing would not have been possible; Ruihao Wang and Sam Blanchard for the collaborative design of ESCHER’s covers; and Christian Rippe for providing FEA throughout the chest design process. Lastly, thank you to additional team sponsors including the General Motors Foundation, HDT Global, Maxon Precision Motors, NetApp, Rapid Manufacturing, and THK.

References

  1. Bry, A., Bachrach, A., & Roy, N. (2012). State estimation for aggressive flight in GPS-denied environments using onboard sensing. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–8).Google Scholar
  2. Burton, J. D. (2016). Development and characterization of an interprocess communications interface and controller for bipedal robots.Google Scholar
  3. de Lasa, M., & Hertzmann, A. (2009). Prioritized optimization for task-space control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5755–5762).Google Scholar
  4. Dellaert, F. (2012). Factor graphs and GTSAM: A hands-on introduction. Technical Report GT-RIM-CP&R-2012-002, GT RIM.Google Scholar
  5. Diankov, R., & Kuffner, J. (2008). OpenRAVE: A planning architecture for autonomous robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh, PA.Google Scholar
  6. Edsinger-Gonzales, A., & Weber, J. (2004). Domo: A force sensing humanoid robot for manipulation research. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (Vol. 1, pp. 273–291).Google Scholar
  7. Englsberger, J., Ott, C., & Albu-Schaffer, A. (2013). Three-dimensional bipedal walking control using Divergent Component of Motion. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2600–2607).Google Scholar
  8. Englsberger, J., Koolen, T., Bertrand, S., Pratt, J., Ott, C., & Albu-Schaffer, A. (2014a). Trajectory generation for continuous leg forces during double support and heel-to-toe shift based on Divergent Component of Motion. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4022–4029).Google Scholar
  9. Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M., Garofalo, G., Burger, R., et al. (2014b). Overview of the torque-controlled humanoid robot TORO. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 916–923).Google Scholar
  10. Fallon, M., Antone, M., Roy, N., & Teller, S. (2014). Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 112–119).Google Scholar
  11. Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. (2015). Optimization-based full body control for the DARPA Robotics Challenge. Journal of Field Robotics, 32(2), 293–312.CrossRefGoogle Scholar
  12. Griffin, R. J., & Leonessa, A. (2016). Model predictive control for dynamic footstep adjustment using the divergent component of motion. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  13. Grisetti, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2432–2437).Google Scholar
  14. HDT-Global. (2015). Adroit MK2 systems robotic arm and manipulator.Google Scholar
  15. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 981–988).Google Scholar
  16. Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. In IEEE International Conference on Robotics and Automation (ICRA) (Vol. 2, pp. 1321–1326).Google Scholar
  17. Hopkins, M., Hong, D., & Leonessa, A. (2014). Humanoid locomotion on uneven terrain using the time-varying Divergent Component of Motion. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 266–272).Google Scholar
  18. Hopkins, M., Griffin, R., Leonessa, A., Lattimer, B., & Furukawa, T. (2015a). Design of a compliant bipedal walking controller for the DARPA Robotics Challenge. In IEEE/RAS International Conference on Humanoid Robots (Humanoids).Google Scholar
  19. Hopkins, M., Hong, D., & Leonessa, A. (2015b). Compliant locomotion using whole-body control and Divergent Component of Motion tracking. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  20. Hopkins, M., Ressler, S., Lahr, D., Hong, D., & Leonessa, A. (2015c). Embedded joint-space control of a series elastic humanoid. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany.Google Scholar
  21. Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). Octomap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.CrossRefGoogle Scholar
  22. Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Volume 101 of Springer Tracts in Advanced Robotics. Berlin, Heidelberg: Springer.Google Scholar
  23. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., et al. (2002). Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2431–2436).Google Scholar
  24. Knabe, C., Lee, B., & Hong, D. (2014a). An inverted straight line mechanism for augmenting joint range of motion in a humanoid robot. In ASME International Design Engineering Technical Conference (IDETC).Google Scholar
  25. Knabe, C., Lee, B., Orekhov, V., & Hong, D. (2014b). Design of a compact, lightweight, electromechanical linear series elastic actuator. In ASME International Design Engineering Technical Conference (IDETC).Google Scholar
  26. Knabe, C., Seminatore, J., Webb, J., Hopkins, M., Furukawa, T., Leonessa, A., et al. (2015). Design of a series elastic humanoid for the DARPA Robotics Challenge. In IEEE/RAS International Conference on Humanoid Robots (Humanoids).Google Scholar
  27. Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2149–2154).Google Scholar
  28. Kohlbrecher, S., Romay, A., Stumpf, A., Gupta, A., von Stryk, O., Bacim, F., et al. (2015). Human-robot teaming for rescue missions: TeamViGIR’s approach to the 2013 DARPA Robotics Challenge Trials. Journal of Field Robotics, 32(3), 352–377.CrossRefGoogle Scholar
  29. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team IHMC’s Virtual Robotics Challenge entry. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 307–314).Google Scholar
  30. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2016). Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Autonomous Robots, 40(3), 429–455.CrossRefGoogle Scholar
  31. Kuindersma, S., Permenter, F., & Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2589–2594).Google Scholar
  32. Lahr, D., Orekhov, V., Lee, B., & Hong, D. (2013). Development of a parallelly actuated humanoid, SAFFiR. In Proceedings of the ASME International Design Engineering Technical Conference (IDETC).Google Scholar
  33. Lee, B. (2014). Design of a humanoid robot for disaster response. Master’s thesis, Virginia Polytechnic Institute and State University.Google Scholar
  34. Lee, B., Knabe, C., Orekhov, V., & Hong, D. (2014). Design of a human-like range of motion hip joint for humanoid robots. In ASME International Design Engineering Technical Conference (IDETC).Google Scholar
  35. McGill, S., Brindza, J., Yi, S. J., & Lee, D. (2010). Unified humanoid robotics software platform. In The 5th Workshop on Humanoid Soccer Robots.Google Scholar
  36. McNaughton, M., Baker, C., Galatali, T., Salesky, B., Urmson, C., & Ziglar, J. (2008). Software infrastructure for an autonomous ground vehicle. Journal of Aerospace Computing, Information, and Communication, 5(12), 491–505.CrossRefGoogle Scholar
  37. Orekhov, V., Knabe, C., Hopkins, M., & Hong, D. (2015). An unlumped model for linear series elastic actuators with ball screw drives. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  38. Orekhov, V., Lahr, D., Lee, B., & Hong, D. (2013). Configurable compliance for series elastic actuators. In ASME International Design Engineering Technical Conferences (IDETC).Google Scholar
  39. Paine, N., Oh, S., & Sentis, L. (2014). Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080–1091.CrossRefGoogle Scholar
  40. Paluska, D., & Herr, H. (2006). The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robotics and Autonomous Systems, 54(8), 667–673.CrossRefGoogle Scholar
  41. Pratt, G., & Williamson, M. (1995). Series elastic actuators. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 399–406).Google Scholar
  42. Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture Point: A step toward humanoid push recovery. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 200–207).Google Scholar
  43. Pratt, J., & Krupp, B. (2004). Series elastic actuators for legged robots. In Defense and Security (pp. 135–144).Google Scholar
  44. Pratt, J., & Krupp, B. (2008). Design of a bipedal walking robot. In SPIE Defense and Security Symposium (pp. 69621F1–69621F13).Google Scholar
  45. Pratt, J., Krupp, B., & Morse, C. (2002). Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal, 29(3), 234–241.CrossRefGoogle Scholar
  46. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An open-source Robot Operating System. In ICRA Workshop on Open Source Software (Vol. 3, p. 5).Google Scholar
  47. Ressler, S. A. (2014). Design and implementation of a dual axis motor controller for parallel and serial series elastic actuators. Master’s thesis, Virginia Polytechnic Institute and State University.Google Scholar
  48. Robinson, D., Pratt, J., Paluska, D., Pratt, G., et al. (1999). Series elastic actuator development for a biomimetic walking robot. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 561–568).Google Scholar
  49. Robotnik, R. (2015). Robotics manipulator.Google Scholar
  50. Romay, A., Kohlbrecher, S., Conner, D., Stumpf, A., & von Stryk, O. (2014). Template-based manipulation in unstructured environments for supervised semi-autonomous humanoid robots. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 979–986).Google Scholar
  51. Rouleau, M., & Hong, D. (2014). Design of an underactuated robotic end-effector with a focus on power tool manipulation. In ASME International Design Engineering Technical Conference (IDETC).Google Scholar
  52. Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.CrossRefGoogle Scholar
  53. Sensinger, J., et al. (2006). Improvements to series elastic actuators. In IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (pp. 1–7).Google Scholar
  54. Stephens, B., & Atkeson, C. (2010). Dynamic balance force control for compliant humanoid robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1248–1255).Google Scholar
  55. Stumpf, A., Kohlbrecher, S., Conner, D., & von Stryk, O. (2014). Supervised footstep planning for humanoid robots in rough terrain tasks using a black box walking controller. In IEEE/RAS International Conference on Humanoid Robots (Humanoids) (pp. 287–294).Google Scholar
  56. Sucan, I., & Chitta, S. (2012). MoveIt!Google Scholar
  57. Tsagarakis, N., Morfey, S., Cerda, G., Zhibin, L., & Caldwell, D. (2013). COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 673–678).Google Scholar
  58. Wittenstein, N. (2015). Force feedback for reliable robotic door opening. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  59. Zhang, J., & Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. In Robotics: Science and Systems Conference (RSS).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Coleman Knabe
    • 2
  • Robert Griffin
    • 2
  • James Burton
    • 2
  • Graham Cantor-Cooke
    • 2
  • Lakshitha Dantanarayana
    • 1
  • Graham Day
    • 2
  • Oliver Ebeling-Koning
    • 2
  • Eric Hahn
    • 2
  • Michael Hopkins
    • 2
  • Jordan Neal
    • 2
  • Jackson Newton
    • 2
  • Chris Nogales
    • 2
  • Viktor Orekhov
    • 2
  • John Peterson
    • 2
  • Michael Rouleau
    • 2
  • John Seminatore
    • 2
  • Yoonchang Sung
    • 2
  • Jacob Webb
    • 2
  • Nikolaus Wittenstein
    • 2
  • Jason Ziglar
    • 2
  • Alexander Leonessa
    • 2
  • Brian Lattimer
    • 2
  • Tomonari Furukawa
    • 2
  1. 1.University of Technology, Sydney (UTS)UltimoAustralia
  2. 2.Virginia TechBlacksburgUSA

Personalised recommendations