Skip to main content

Coupling Acoustic-Structure Systems Using Dynamic Substructuring

  • Conference paper
  • First Online:
Dynamics of Coupled Structures, Volume 4

Abstract

Dynamic substructuring allows analysts to combine component structural dynamics models into system-level models. For purely structural systems, dynamic substructuring techniques are well established. Here, one such technique is adapted to solve the coupled response of elastic structures in contact with acoustic cavities. The inputs to the process are the component natural frequencies and the free-interface structural and acoustic modes. The approach is well suited for use with analytical, finite element and/or empirical component modes. Unlike alternative acoustic-structure interaction approaches, the present technique avoids the cumbersome calculation of coupling coefficients and can result in real-valued system natural frequencies and modes. The technique is applied to a simple acoustic-structure system and the results from the model are used to gain insight into acoustic-structure interaction phenomena that have been observed in test hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968)

    Google Scholar 

  2. MacNeal, R.H.: A hybrid method of component mode synthesis. J. Comput. Struct. 1(4), 581–601 (1971)

    Article  Google Scholar 

  3. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975)

    Article  Google Scholar 

  4. Jetmundsen, B.: On frequency domain methodologies for structural modification and subsystem synthesis. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy (1986)

    Google Scholar 

  5. de Klerk, D., Rixen, D.J., Voormeeren, S. N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  6. Allen, M.S., Kammer, D.C., Mayes, R.L.: Uncertainty in experimental/analytical substructuring predictions: a review with illustrative examples. In: ISMA2010—International Conference on Noise and Vibration Engineering, Leuven (2010)

    Google Scholar 

  7. Davis, R.B., Fulcher, C.W.: Framework for optimizing the vibroacoustic response of component loaded panels. AIAA J. 53(1), 265–272 (2014)

    Article  Google Scholar 

  8. Wolf, J.A., Jr.: Modal synthesis for combined structural-acoustic systems. AIAA J. 15, 743–745 (1977)

    Article  Google Scholar 

  9. Nefske, D.J., Sung, S.H.: Automobile interior noise prediction using a coupled structural-acoustic finite element model. In: Proceeding of the 11th International Congress on Acoustics, Paris, vol. 5, pp. 465–468 (1983)

    Google Scholar 

  10. Sung, S.H., Nefske, D.J.: A coupled structural-acoustic finite element model for vehicle interior noise analysis. J. Vib. Stress Reliab. Des. 106, 314–318 (1984)

    Article  Google Scholar 

  11. Sung, S.H., Nefske, D.J.: Component mode synthesis of a vehicle structural-acoustic system. AIAA J. 24(6), 1021–1026 (1986)

    Article  Google Scholar 

  12. Junge, M., Brunner, D., Becker, J., Gaul, L.: Interface-reduction for the Craig–Bampton and Rubin method applied to FE–BE coupling with a large fluid–structure interface. Int. J. Numer. Methods Eng. 77(12), 1731–1752 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dowell, E.H., Gorman, G.F., III, Smith, D.A.: Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation including comparisons with experiment. J. Sound Vib. 52(4), 519–542 (1977)

    Article  Google Scholar 

  14. Davis, R.B., Virgin, L.N., Brown, A.M.: An efficient modal analysis method for structures coupled to fluid-filled cavities. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1849 (2008)

    Google Scholar 

  15. Pierce, A.D.: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America, New York (1989)

    Google Scholar 

  16. Ginsberg, J.H.: Mechanical and Structural Vibrations: Theory and Applications. Wiley, New York (2001)

    Google Scholar 

  17. Davis, R.: A simplified approach for predicting interaction between flexible structures and acoustic enclosures. J. Fluids and Struct. 70, 276–294 (2017)

    Article  Google Scholar 

  18. Davis, R.B.: Techniques to assess acoustic-structure interaction in liquid rocket engines. Ph.D. thesis, Duke University, Durham (2008)

    Google Scholar 

  19. Schultz, R., Pacini, B.: Mitigation of structural-acoustic mode coupling in a modal test of a hollow structure. In: Maio, D.D., Castellini, P. (eds.) Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, vol. 8, pp. 71–84. Springer, Cham (2017)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davis, R.B., Schultz, R. (2018). Coupling Acoustic-Structure Systems Using Dynamic Substructuring. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamics of Coupled Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74654-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74654-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74653-1

  • Online ISBN: 978-3-319-74654-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics