Advertisement

Broadband Energy Harvesting Performance of a Piezoelectrically Generated Bistable Laminate

  • Andrew J. LeeEmail author
  • Daniel J. Inman
Conference paper
  • 580 Downloads
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The vibration based energy harvesting performance of a piezoelectrically generated bistable laminate consisting of only Macro Fiber Composites (MFC) is experimentally characterized. Conventionally, piezoelectric transducers are bonded onto thermally induced bistable composite laminates and exhibit broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Recently, a novel method of inducing bistability was proposed by bonding two actuated MFCs in a [0 MFC ∕90 MFC ] T layup and releasing the voltage post cure to create in-plane residual stresses and yield two cylindrically stable configurations. Forward and backward frequency sweeps at multiple acceleration levels across the first two observed modes of the laminate’s two states are performed to identify all dynamic regimes and the corresponding voltages produced by each MFC. Besides single-well oscillations, snap throughs are observed in intermittencies, subharmonic, chaotic, and limit cycle oscillations across wide frequency ranges. Resistor sweeps are conducted for each regime to determine maximum power outputs, and single and multi-frequency performance metrics accounting for laminate volume, mass, input accelerations, and frequencies are evaluated for the laminate. A performance comparison with conventional bistable composite harvesters demonstrate the laminate’s viability for energy harvesting, allowing it to be multi-functional in combination with its snap through morphing capability.

Keywords

Energy Harvesting Performance Generated Bistable Macro Fiber Composite (MFC) Limit Cycle Oscillations Backward Frequency Sweeps 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the US Air Force Office of Scientific Research (AFOSR) under grant number FA9550-16-1-0087, titled “Avian-Inspired Multifunctional Morphing Vehicles” monitored by Dr. B.L. Lee.

References

  1. 1.
    Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRefGoogle Scholar
  2. 2.
    Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67(6), 060803 (2015)CrossRefGoogle Scholar
  3. 3.
    Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)CrossRefGoogle Scholar
  4. 4.
    Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2012)CrossRefGoogle Scholar
  5. 5.
    Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)CrossRefGoogle Scholar
  6. 6.
    Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 941(10), 254102–254103 (2009)CrossRefGoogle Scholar
  7. 7.
    Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)CrossRefGoogle Scholar
  8. 8.
    Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23(13), 1433–1449 (2012)CrossRefGoogle Scholar
  9. 9.
    Lin, J.T., Alphenaar, B.: Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J. Intell. Mater. Syst. Struct. 21(13), 1337–1341 (2010)CrossRefGoogle Scholar
  10. 10.
    Karami, M.A., Farmer, J.R., Inman, D.J.: Parametrically excited nonlinear piezoelectric compact wind turbine. Renew. Energy 50, 977–987 (2013)CrossRefGoogle Scholar
  11. 11.
    Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21(3), 035021 (2012)CrossRefGoogle Scholar
  12. 12.
    Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)CrossRefGoogle Scholar
  13. 13.
    Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)CrossRefGoogle Scholar
  14. 14.
    Arrieta, A.F., Delpero, T., Bergamini, A.E., Ermanni, P.: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102(17), 173904 (2013)CrossRefGoogle Scholar
  15. 15.
    Betts, D., Bowen, C., Kim, H., Gathercole, N., Clarke, C., Inman, D.: Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222(7), 1553–1562 (2013)CrossRefGoogle Scholar
  16. 16.
    Betts, D.N., Guyer, R.A., Le Bas, P.Y., Bowen, C.R., Inman, D., Kim, H.A.: Modelling the dynamic response of bistable composite plates for piezoelectric energy harvesting. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2014)Google Scholar
  17. 17.
    Betts, D.N., Bowen, C.R., Inman, D.J., Weaver, P.M., Kim, H.A.: Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting. In: SPIE Active and Passive Smart Structures and Integrated Systems (2014)Google Scholar
  18. 18.
    Li, H., Dai, F., Du, S.: Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate. Smart Mater. Struct. 24(4), 045024 (2015)CrossRefGoogle Scholar
  19. 19.
    Harris, P., Skinner, W., Bowen, C.R., Kim, H.A.: Manufacture and characterisation of piezoelectric broadband energy harvesters based on asymmetric bistable cantilever laminates. Ferroelectrics 480, 67–76 (2015)CrossRefGoogle Scholar
  20. 20.
    Harris, P., Arafa, M., Litak, G., Bowen, C.R., Iwaniec, J.: Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90, 1–11 (2017)Google Scholar
  21. 21.
    Pan, D., Ma, B., Dai, F.: Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater. Struct. 26(3), 035045 (2017)CrossRefGoogle Scholar
  22. 22.
    Udani, J.P., Wrigley, C., Arrieta, A.F.: Performance metric comparison study for non-magnetic bi-stable energy harvesters. In: SPIE Active and Passive Smart Structures and Integrated Systems (2017)Google Scholar
  23. 23.
    Lee, A.J., Moosavian, A., Inman, D.J.: A piezoelectrically generated bistable laminate for morphing. Mater. Lett. 190, 123–126 (2017)CrossRefGoogle Scholar
  24. 24.
    Lee, A.J., Moosavian, A., Inman, D.J.: Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater. Struct. 26, 085007 (2017)CrossRefGoogle Scholar
  25. 25.
    Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15(2), 175–194 (1981)CrossRefGoogle Scholar
  26. 26.
    Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D.J.: Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett. 100(95), 114104–114117 (2012)CrossRefGoogle Scholar
  27. 27.
    Sodano, H.A.: An experimental comparison between several active composite actuators for power generation. Smart Mater. Struct. 15, 1211–1216 (2006)CrossRefGoogle Scholar
  28. 28.
    Choi, Y.T., Wereley, N.M., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21(6), 647–658 (2010)CrossRefGoogle Scholar
  29. 29.
    Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’Donnell, T., Saha, C.R., Roy, S.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)CrossRefGoogle Scholar
  30. 30.
    Gigliotti, M., Wisnom, M.R., Potter, K.D.: Loss of bifurcation and multiple shapes of thin [0/90] unsymmetric composite plates subject to thermal stress. Compos. Sci. Tech. 64(1), 109–128 (2004)CrossRefGoogle Scholar
  31. 31.
    Moon, F.C.: Chaotic and Fractal Dynamics: an Introduction for Applied Scientists and Engineers. Wiley, New York (1992)CrossRefGoogle Scholar
  32. 32.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Cambridge (1994)zbMATHGoogle Scholar
  33. 33.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Virgin, L.N.: Introduction to experimental nonlinear dynamics: a case study in mechanical vibration. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations