Skip to main content

Design and Development of a Flexure-Based Compact Constant-Force Robotic Gripper

  • Chapter
  • First Online:

Abstract

This chapter presents the design of a novel flexure-based compliant gripper with constant gripping force and compact structure size for cell micromanipulation applications. The gripper removes the use of force sensor and provides a near constant force output via its mechanical structure, which greatly simplifies the system design process. The compact size of the gripper is achieved by the serial connection of a bistable beam and a positive-stiffness beam. Moreover, a combined mechanism, which can alter the fixing angle of the two gripper jaws, is developed to enlarge the handling size. Analytical modeling and finite element analysis are conducted to predict the gripper performance. A prototype gripper is fabricated by 3D printer, and a series of experiments are carried out to verify its performance. Grasp testing of crab egg embryos has been carried out to demonstrate its effectiveness in biological micromanipulation application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beyeler, F., Neild, A., Oberti, S., Bell, D.J., Sun, Y., Dual, J., Nelson, B.J.: Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J. Microelectromechanical Syst. 16(1), 7–15 (2007)

    Article  Google Scholar 

  2. Chen, C.C., Lan, C.C.: An accurate force regulation mechanism for handling fragile objects using pneumatic grippers. In: Proc of 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 389–394. Banff, Alberta, Canada (2016)

    Google Scholar 

  3. Chen, G., Ma, Y., Li, J.: A tensural displacement amplifier employing elliptic-arc flexure hinges. Sensors. Actuators A: Phys. 247, 307–315 (2016)

    Article  Google Scholar 

  4. Chen, T., Wang, Y., Yang, Z., Liu, H., Liu, J., Sun, L.: A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2), 33 (2017)

    Article  Google Scholar 

  5. Choi, S., Han, S., Lee, Y.: Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier. Smart Mater. Struct. 14(1), 222 (2004)

    Article  Google Scholar 

  6. Hao, G., Mullins, J., Cronin, K.: Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper. Proc. Inst. Mechanical Eng. Part C: J. Mechanical Eng. Sci. 231(11), 2110–2123 (2017)

    Article  Google Scholar 

  7. Holst, G.L., Teichert, G.H., Jensen, B.D.: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms. J. Mechanical Des. 133(5), 051,002 (2011)

    Article  Google Scholar 

  8. Huang, H., Sun, D., Su, H., Mills, J.K.: Force sensing and control in robot-assisted suspended cell injection system. In: Advances in Robotics and Virtual Reality, pp. 61–88. Springer (2012)

    Google Scholar 

  9. Huang, L.Y., Lin, Y.C., Liu, Y.C., Su, J.Y., Lin, P.C.: A manipulator with a depth sensor and an underactuated and tactile gripper for identifying and grasping objects of various shapes and sizes. In: Proc. of The 14th IFToMM World Congress, pp. 1–8 (2015)

    Google Scholar 

  10. Kim, H., Kim, J., Ahn, D., Gweon, D.: Development of a nanoprecision 3-DOF vertical positioning system with a flexure hinge. IEEE Trans. Nanotechnology 12(2), 234–245 (2013)

    Article  Google Scholar 

  11. Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic mems microgripper with two-axis force feedback. J. Micromechanics Microengineering 18(5), 055,013 (2008)

    Article  Google Scholar 

  12. Lamers, A.J., Sanchez, J.A.G., Herder, J.L.: Design of a statically balanced fully compliant grasper. Mechanism Machine Theory 92, 230–239 (2015)

    Article  Google Scholar 

  13. Liu, Y., Xu, Q.: Design and analysis of a micro-gripper with constant force mechanism. In: Proc. of 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 2142–2147 (2016)

    Google Scholar 

  14. Liu, Y., Xu, Q.: Design of a compliant constant force gripper mechanism based on buckled fixed-guided beam. In: Proc. of International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6 (2016)

    Google Scholar 

  15. Liu, Y., Xu, Q.: Design of a 3D-printed polymeric compliant constant-force buffering gripping mechanism. In: Proc. of 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–6 (2017)

    Google Scholar 

  16. Liu, Y., Zhang, Y., Xu, Q.: Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams. IEEE/ASME Trans. Mechatronics 22(1), 476–486 (2017)

    Article  Google Scholar 

  17. Lobontiu, N., Cullin, M., Petersen, T., Alcazar, J.A., Noveanu, S.: Planar compliances of symmetric notch flexure hinges: the right circularly corner-filleted parabolic design. IEEE Trans. Autom. Sci. Eng. 11(1), 169–176 (2014)

    Article  Google Scholar 

  18. Ma, C.Z., Du, J.S., Liu, Y.Y., Chu, Y.K.: Overview of micro-force sensing methods. Appl. Mech. Mater. 462, 25–31 (2014)

    Google Scholar 

  19. Medina, L., Gilat, R., Ilic, B.R., Krylov, S.: Open-loop, self-excitation in a bistable micromechanical beam actuated by a dc electrostatic load. In: Proc. of 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 785–788 (2017)

    Google Scholar 

  20. Midha, A., Bapat, S.G., Mavanthoor, A., Chinta, V.: Analysis of a fixed-guided compliant beam with an inflection point using the pseudo-rigid-body model concept. Journal of Mechanisms and Robotics 7(3), 031,007 (2015)

    Google Scholar 

  21. Mølhave, K., Hansen, O.: Electro-thermally actuated microgrippers with integrated force-feedback. J. Micromechanics Microengineering 15(6), 1265 (2005)

    Article  Google Scholar 

  22. Pham, H.T., Wang, D.A.: A constant-force bistable mechanism for force regulation and overload protection. Mechanism Machine Theory 46(7), 899–909 (2011)

    Article  MATH  Google Scholar 

  23. Reddy, A.N., Maheshwari, N., Sahu, D.K., Ananthasuresh, G.K.: Miniature compliant grippers with vision-based force sensing. IEEE Trans. Rob. 26(5), 867–877 (2010)

    Article  Google Scholar 

  24. Stavenuiter, R.A.J., Birglen, L., Herder, J.L.: A planar underactuated grasper with adjustable compliance. Mechanism Machine Theory 112, 295–306 (2017)

    Article  Google Scholar 

  25. Tolman, K.A., Merriam, E.G., Howell, L.L.: Compliant constant-force linear-motion mechanism. Mechanism Machine Theory 106, 68–79 (2016)

    Article  Google Scholar 

  26. Tolou, N., Pluimers, P., Jensen, B.D., Magleby, S., Howell, L.L., Herder, J.L.: Near-zero-stiffness linear motion stage with high orthogonal and out-of-plane stiffness. Proc of 1st DSPE Conf. on Precision Mechatronics, pp. 1–2. Deurne, The Netherlands (2012)

    Google Scholar 

  27. Wang, J.Y., Lan, C.C.: A constant-force compliant gripper for handling objects of various sizes. J. Mechanical Des. 136(7), 071,008 (2014)

    Article  Google Scholar 

  28. Wang, P., Xu, Q.: Design of a flexure-based constant-force XY precision positioning stage. Mechanism Machine Theory 108, 1–13 (2017)

    Article  Google Scholar 

  29. Wei, Y., Xu, Q.: An overview of micro-force sensing techniques. Sensors Actuators A: Phys. 234, 359–374 (2015)

    Article  Google Scholar 

  30. Wu, Q., Wang, X., Chen, B., Wu, H., Shao, Z.: Development and hybrid force/position control of a compliant rescue manipulator. Mechatronics 46, 143–153 (2017)

    Article  Google Scholar 

  31. Xie, Y., Sun, D., Tse, H.Y.G., Liu, C., Cheng, S.H.: Force sensing and manipulation strategy in robot-assisted microinjection on zebrafish embryos. IEEE/ASME Trans. Mechatronics 16(6), 1002–1010 (2011)

    Article  Google Scholar 

  32. Xu, Q.: Design, testing and precision control of a novel long-stroke flexure micropositioning system. Mechanism Machine Theory 70, 209–224 (2013)

    Article  Google Scholar 

  33. Xu, Q.: Design of a large-stroke bistable mechanism for the application in constant-force micropositioning stage. J. Mechanisms and Robotics 9(1), 011,006 (2017)

    Article  Google Scholar 

  34. Zhang, D., Zhang, Z., Gao, Q., Xu, D., Liu, S.: Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics 25, 37–43 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Q. (2018). Design and Development of a Flexure-Based Compact Constant-Force Robotic Gripper. In: Micromachines for Biological Micromanipulation. Springer, Cham. https://doi.org/10.1007/978-3-319-74621-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74621-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74620-3

  • Online ISBN: 978-3-319-74621-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics