Skip to main content

Design, Fabrication, and Testing of a Constant-Force Microinjector

  • Chapter
  • First Online:
Book cover Micromachines for Biological Micromanipulation
  • 925 Accesses

Abstract

This chapter presents the design and testing of a flexure-based microinjector with constant force output dedicated to biological cell micromanipulation. The microinjector offers a constant force without adopting a force controller. The motion control is sufficient to provide a constant output force, that simplifies the system design procedure. The injector is actuated by a piezoelectric actuator via a displacement amplifier. Analytical models of the mechanism are established and verified by conducting simulation study with finite element analysis (FEA) . A prototype device is fabricated by 3D printing process for experimental study. The feasibility of the developed constant-force injector for biological cell micromanipulation is verified by experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, G., Gou, Y., Zhang, A.: Synthesis of compliant multistable mechanisms through use of a single bistable mechanism. J. Mech. Des. 133(8), 081007 (2011)

    Article  Google Scholar 

  2. Chen, Y.H., Lan, C.C.: An adjustable constant-force mechanism for adaptive end-effector operations. J. Mech. Des. 134(3), 031005 (2012)

    Article  Google Scholar 

  3. Choi, K.B., Kim, D.H.: Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion. Rev. Sci. Instrum. 77(6), 065106 (2006)

    Article  Google Scholar 

  4. Choi, Y.J., Sreenivasan, S., Choi, B.J.: Kinematic design of large displacement precision xy positioning stage by using cross strip flexure joints and over-constrained mechanism. Mech. Mach. Theory 43(6), 724–737 (2008)

    Article  MATH  Google Scholar 

  5. Goncalves, F.D., Finnegan, P.F., Sigman, G., Brown, M.V.: Caster wheel with constant force mechanism (2015). US Patent 20,150,274,495

    Google Scholar 

  6. Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H., Fatikow, S.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13(1), 313–332 (2016)

    Article  Google Scholar 

  7. Holst, G.L., Teichert, G.H., Jensen, B.D.: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms. J. Mech. Des. 133(5), 051 (2011)

    Article  Google Scholar 

  8. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  9. Klein, R.J.: Constant force compression tool (2013). US Patent App. 13/746,929

    Google Scholar 

  10. Lamers, A.J., Sanchez, J.A.G., Herder, J.L.: Design of a statically balanced fully compliant grasper. Mech. Mach. Theory 92, 230–239 (2015)

    Article  Google Scholar 

  11. Lan, C.C., Cheng, Y.J.: Distributed shape optimization of compliant mechanisms using intrinsic functions. J. Mech. Des. 130(7), 072304 (2008)

    Article  Google Scholar 

  12. Liu, Y., Shan, J., Gabbert, U.: Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications. Smart Mater. Struct. 24(1), 015012 (2015)

    Article  Google Scholar 

  13. Liu, Y., Zhang, Y., Xu, Q.: Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams. IEEE/ASME Trans. Mechatron. 22(1), 476–486 (2017)

    Article  Google Scholar 

  14. Malloy, A.L., Radzik, J., Dean, M., Hauver, B.C., Knaus, G.A., Thomas, C.: Constant force coaxial cable connector (2012). US Patent RE43,832

    Google Scholar 

  15. Polit, S., Dong, J.: Design of high-bandwidth high-precision flexure-based nanopositioning modules. J. Manuf. Syst. 28(2), 71–77 (2009)

    Article  Google Scholar 

  16. Putra, A.S., Huang, S., Tan, K.K., Panda, S.K., Lee, T.H.: Design, modeling, and control of piezoelectric actuators for intracytoplasmic sperm injection. IEEE Trans. Control Syst. Technol. 15(5), 879–890 (2007)

    Article  Google Scholar 

  17. Qiu, J., Lang, J.H., Slocum, A.H.: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13(2), 137–146 (2004)

    Article  Google Scholar 

  18. Todd, B., Jensen, B.D., Schultz, S.M., Hawkins, A.R.: Design and testing of a thin-flexure bistable mechanism suitable for stamping from metal sheets. J. Mech. Des. 132(7), 071011 (2010)

    Article  Google Scholar 

  19. Wang, J.Y., Lan, C.C.: A constant-force compliant gripper for handling objects of various sizes. J. Mech. Des. 136(7), 071008 (2014)

    Article  Google Scholar 

  20. Wang, P., Xu, Q.: Design and testing of a flexure-based constant-force stage for biological cell micromanipulation. IEEE Trans. Autom. Sci. Eng. (2017). https://doi.org/10.1109/TASE.2017.2733553

  21. Wang, P., Xu, Q.: Design of a flexure-based constant-force XY precision positioning stage. Mech. Mach. Theory 108, 1–13 (2017)

    Article  Google Scholar 

  22. Xie, Y., Sun, D., Tse, H.Y.G., Liu, C., Cheng, S.H.: Force sensing and manipulation strategy in robot-assisted microinjection on zebrafish embryos. IEEE/ASME Trans. Mechatron. 16(6), 1002–1010 (2011)

    Article  Google Scholar 

  23. Xu, Q.: Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans. Rob. 29(3), 663–673 (2013)

    Article  Google Scholar 

  24. Xu, Q., Li, Y.: Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mech. Mach. Theory 46(2), 183–200 (2011)

    Article  MATH  Google Scholar 

  25. Zhang, W., Sobolevski, A., Li, B., Rao, Y., Liu, X.: An automated force-controlled robotic micromanipulation system for mechanotransduction studies of drosophila larvae. IEEE Trans. Autom. Sci. Eng. 13(2), 789–797 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Q. (2018). Design, Fabrication, and Testing of a Constant-Force Microinjector. In: Micromachines for Biological Micromanipulation. Springer, Cham. https://doi.org/10.1007/978-3-319-74621-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74621-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74620-3

  • Online ISBN: 978-3-319-74621-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics