Skip to main content

Pharmacological Countermeasures

  • Chapter
  • First Online:
Space Radiation and Astronaut Safety

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

  • 1078 Accesses

Abstract

Space agencies conduct radiation research because astronauts are exposed to chronic doses of radiation. But during long duration missions beyond LEO there is a real danger that crews may be exposed to acute doses that may lead to acute radiation syndrome (ARS). To be prepared for such missions, space agencies must be prepared to anticipate radiation exposures and be able to deal with the consequences [1–4]. One way to do this is to implement a radiation medical countermeasures (Figs. 9.1 and 9.2) program that would cover products used following a radiological emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anno GH, Baum SJ, Withers HR, Young RW. Symptomatology of acute radiation effects in humans after exposure to doses of 0.5-30 Gy. Health Phys. 1989;56(6):821–38.

    Article  Google Scholar 

  2. Waselenko JK, MacVittie TJ, Blakely WF, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140:1037–51.

    Article  Google Scholar 

  3. Townsend LW. Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosim. 2005;115:44–50.

    Article  Google Scholar 

  4. Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Badhwar GD, Saganti PB, Dicello JF. Space radiation cancer risks and uncertainties for Mars missions. Radiat Res. 2001;156:682–8.

    Article  ADS  Google Scholar 

  5. Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res. 2003;531(1-2):231–51.

    Article  Google Scholar 

  6. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  Google Scholar 

  7. Booth C, Tudor G, Tudor J, Katz BP, MacVittie TJ. Acute gastrointestinal syndrome in high-dose irradiated mice. Health Phys. 2012;103(4):383–99.

    Article  Google Scholar 

  8. Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30(6):513–28.

    Article  Google Scholar 

  9. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12(6):738–47.

    Article  Google Scholar 

  10. van der Vijgh WJ, Peters GJ. Protection of normal tissues from the cytotoxic effects of chemotherapy and radiation by amifostine (Ethyol): preclinical aspects. Semin Oncol. 1994;21(5 Suppl 11):2–7.

    Google Scholar 

  11. Bourhis J, Blanchard P, Maillard E, Brizel DM, Movsas B, Buentzel J, et al. Effect of amifostine on survival among patients treated with radiotherapy: a meta-analysis of individual patient data. J Clin Oncol. 2011;29(18):2590–7.

    Article  Google Scholar 

  12. Praetorius NP, Mandal TK. Alternate delivery route for amifostine as a radio-/chemo-protecting agent. J Pharm Pharmacol. 2008;60(7):809–15.

    Article  Google Scholar 

  13. Seed TM, Inal CE, Singh VK. Radioprotection of hematopoietic progenitors by low dose amifostine prophylaxis. Int J Radiat Biol. 2014;90(7):594–604.

    Article  Google Scholar 

  14. Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm Res. 2003;52(8):341–6. 8

    Article  Google Scholar 

  15. Landauer MR, Srinivasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J Appl Toxicol. 2003;23(6):379–85.

    Article  Google Scholar 

  16. Para AE, Bezjak A, Yeung IW, Van Dyk J, Hill RP. Effects of genistein following fractionated lung irradiation in mice. Radiother Oncol. 2009;92(3):500–10.

    Article  Google Scholar 

  17. Grace MB, Blakely WF, Landauer MR. Genistein-induced alterations of radiation-responsive gene expression. Radiat Meas. 2007;42:1152–7.

    Article  Google Scholar 

  18. Ha CT, Li XH, Fu D, Xiao M, Landauer MR. Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiat Res. 2013;180(3):316–25.

    Article  ADS  Google Scholar 

  19. Davis TA, Landauer MR, Mog SR, Barshishat-Kupper M, Zins SR, Amare MF, et al. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp Hematol. 2010;38(4):270–81.

    Article  Google Scholar 

  20. Moulder JE, Cohen EP, Fish BL, Hill P. Prophylaxis of bone marrow transplant nephropathy with captopril, an inhibitor of angiotensin-converting enzyme. Radiat Res. 1993;136(3):404–7.

    Article  ADS  Google Scholar 

  21. Patil R, Szabó E, Fells JI, Balogh A, Lim KG, Fujiwara Y, Tigyi GJ. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by a novel LPA2 receptor-specific non-lipid agonist. Chem Biol. 2015;22(2):206–16.

    Article  Google Scholar 

  22. Wan XS, Ware JH, Zhou Z, Donahue JJ, Kennedy AR. Protection against radiation induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents. Int J Radiat Oncol Biol Phys. 2006;64:1475–81.

    Article  Google Scholar 

  23. Guan J, Wan XS, Zhou Z, Ware JH, Donahue JJ, Biaglow JE, Kennedy AR. The effects of dietary supplement agents on space radiation-induced oxidative stress in Sprague-Dawley rats. Radiat Res. 2004;162:572–9.

    Article  ADS  Google Scholar 

  24. Guan J, Stewart J, Ware JH, Zhou Z, Donahue JJ, Kennedy AR. Effects of dietary supplements on the space radiation-induced reduction in total antioxidant status in CBA mice. Radiat Res. 2006;165:373–8.

    Article  ADS  Google Scholar 

  25. Ware JH, Sanzari J, Avery S, et al. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010;174:325–30.

    Article  ADS  Google Scholar 

  26. Romero-Weaver AL, Wan XS, Diffenderfer ES, et al. Kinetics of neutrophils in mice exposed to radiation and/or granulocyte colony-stimulating factor treatment. Radiat Res. 2013;180:177–88.

    Article  ADS  Google Scholar 

  27. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10(11):1235–44.

    Article  Google Scholar 

  28. Scholz M, Ackermann M, Emmrich F, Loeffler M, Kamprad M. Effectiveness of cytopenia prophylaxis for different filgrastim and pegfilgrastim schedules in a chemotherapy mouse model. Biologics. 2009;3:27–37.

    Google Scholar 

  29. Fazzi R, Orciuolo E, Trombi L, Mattii L, Battola B, Riccioni R, et al. PEG-Filgrastim activity on granulocyte functions. Leuk Res. 2007;31(10):1453–5.

    Article  Google Scholar 

  30. Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2005;19(6):547–54.

    Article  Google Scholar 

  31. Smith SM, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. J Nutr. 2001;131:2053–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seedhouse, E. (2018). Pharmacological Countermeasures. In: Space Radiation and Astronaut Safety. SpringerBriefs in Space Development. Springer, Cham. https://doi.org/10.1007/978-3-319-74615-9_9

Download citation

Publish with us

Policies and ethics