Pharmacological Countermeasures

  • Erik Seedhouse
Chapter
Part of the SpringerBriefs in Space Development book series (BRIEFSSPACE)

Abstract

Space agencies conduct radiation research because astronauts are exposed to chronic doses of radiation. But during long duration missions beyond LEO there is a real danger that crews may be exposed to acute doses that may lead to acute radiation syndrome (ARS). To be prepared for such missions, space agencies must be prepared to anticipate radiation exposures and be able to deal with the consequences [1–4]. One way to do this is to implement a radiation medical countermeasures (Figs. 9.1 and 9.2) program that would cover products used following a radiological emergency.

References

  1. 1.
    Anno GH, Baum SJ, Withers HR, Young RW. Symptomatology of acute radiation effects in humans after exposure to doses of 0.5-30 Gy. Health Phys. 1989;56(6):821–38.CrossRefGoogle Scholar
  2. 2.
    Waselenko JK, MacVittie TJ, Blakely WF, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140:1037–51.CrossRefGoogle Scholar
  3. 3.
    Townsend LW. Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosim. 2005;115:44–50.CrossRefGoogle Scholar
  4. 4.
    Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Badhwar GD, Saganti PB, Dicello JF. Space radiation cancer risks and uncertainties for Mars missions. Radiat Res. 2001;156:682–8.ADSCrossRefGoogle Scholar
  5. 5.
    Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res. 2003;531(1-2):231–51.CrossRefGoogle Scholar
  6. 6.
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRefGoogle Scholar
  7. 7.
    Booth C, Tudor G, Tudor J, Katz BP, MacVittie TJ. Acute gastrointestinal syndrome in high-dose irradiated mice. Health Phys. 2012;103(4):383–99.CrossRefGoogle Scholar
  8. 8.
    Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30(6):513–28.CrossRefGoogle Scholar
  9. 9.
    Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12(6):738–47.CrossRefGoogle Scholar
  10. 10.
    van der Vijgh WJ, Peters GJ. Protection of normal tissues from the cytotoxic effects of chemotherapy and radiation by amifostine (Ethyol): preclinical aspects. Semin Oncol. 1994;21(5 Suppl 11):2–7.Google Scholar
  11. 11.
    Bourhis J, Blanchard P, Maillard E, Brizel DM, Movsas B, Buentzel J, et al. Effect of amifostine on survival among patients treated with radiotherapy: a meta-analysis of individual patient data. J Clin Oncol. 2011;29(18):2590–7.CrossRefGoogle Scholar
  12. 12.
    Praetorius NP, Mandal TK. Alternate delivery route for amifostine as a radio-/chemo-protecting agent. J Pharm Pharmacol. 2008;60(7):809–15.CrossRefGoogle Scholar
  13. 13.
    Seed TM, Inal CE, Singh VK. Radioprotection of hematopoietic progenitors by low dose amifostine prophylaxis. Int J Radiat Biol. 2014;90(7):594–604.CrossRefGoogle Scholar
  14. 14.
    Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm Res. 2003;52(8):341–6. 8CrossRefGoogle Scholar
  15. 15.
    Landauer MR, Srinivasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J Appl Toxicol. 2003;23(6):379–85.CrossRefGoogle Scholar
  16. 16.
    Para AE, Bezjak A, Yeung IW, Van Dyk J, Hill RP. Effects of genistein following fractionated lung irradiation in mice. Radiother Oncol. 2009;92(3):500–10.CrossRefGoogle Scholar
  17. 17.
    Grace MB, Blakely WF, Landauer MR. Genistein-induced alterations of radiation-responsive gene expression. Radiat Meas. 2007;42:1152–7.CrossRefGoogle Scholar
  18. 18.
    Ha CT, Li XH, Fu D, Xiao M, Landauer MR. Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiat Res. 2013;180(3):316–25.ADSCrossRefGoogle Scholar
  19. 19.
    Davis TA, Landauer MR, Mog SR, Barshishat-Kupper M, Zins SR, Amare MF, et al. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp Hematol. 2010;38(4):270–81.CrossRefGoogle Scholar
  20. 20.
    Moulder JE, Cohen EP, Fish BL, Hill P. Prophylaxis of bone marrow transplant nephropathy with captopril, an inhibitor of angiotensin-converting enzyme. Radiat Res. 1993;136(3):404–7.ADSCrossRefGoogle Scholar
  21. 21.
    Patil R, Szabó E, Fells JI, Balogh A, Lim KG, Fujiwara Y, Tigyi GJ. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by a novel LPA2 receptor-specific non-lipid agonist. Chem Biol. 2015;22(2):206–16.CrossRefGoogle Scholar
  22. 22.
    Wan XS, Ware JH, Zhou Z, Donahue JJ, Kennedy AR. Protection against radiation induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents. Int J Radiat Oncol Biol Phys. 2006;64:1475–81.CrossRefGoogle Scholar
  23. 23.
    Guan J, Wan XS, Zhou Z, Ware JH, Donahue JJ, Biaglow JE, Kennedy AR. The effects of dietary supplement agents on space radiation-induced oxidative stress in Sprague-Dawley rats. Radiat Res. 2004;162:572–9.ADSCrossRefGoogle Scholar
  24. 24.
    Guan J, Stewart J, Ware JH, Zhou Z, Donahue JJ, Kennedy AR. Effects of dietary supplements on the space radiation-induced reduction in total antioxidant status in CBA mice. Radiat Res. 2006;165:373–8.ADSCrossRefGoogle Scholar
  25. 25.
    Ware JH, Sanzari J, Avery S, et al. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010;174:325–30.ADSCrossRefGoogle Scholar
  26. 26.
    Romero-Weaver AL, Wan XS, Diffenderfer ES, et al. Kinetics of neutrophils in mice exposed to radiation and/or granulocyte colony-stimulating factor treatment. Radiat Res. 2013;180:177–88.ADSCrossRefGoogle Scholar
  27. 27.
    Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10(11):1235–44.CrossRefGoogle Scholar
  28. 28.
    Scholz M, Ackermann M, Emmrich F, Loeffler M, Kamprad M. Effectiveness of cytopenia prophylaxis for different filgrastim and pegfilgrastim schedules in a chemotherapy mouse model. Biologics. 2009;3:27–37.Google Scholar
  29. 29.
    Fazzi R, Orciuolo E, Trombi L, Mattii L, Battola B, Riccioni R, et al. PEG-Filgrastim activity on granulocyte functions. Leuk Res. 2007;31(10):1453–5.CrossRefGoogle Scholar
  30. 30.
    Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2005;19(6):547–54.CrossRefGoogle Scholar
  31. 31.
    Smith SM, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. J Nutr. 2001;131:2053–61.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Seedhouse
    • 1
  1. 1.Applied Aviation SciencesEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations