Skip to main content

Auslander–Reiten Theory for Finite-Dimensional Algebras

  • Chapter
  • First Online:
Homological Methods, Representation Theory, and Cluster Algebras

Part of the book series: CRM Short Courses ((CRMSC))

Abstract

This article is based on a course given at the CIMPA School “Homological Methods, Representation Theory and Cluster Algebras,” held in March 2016 in Mar del Plata. The aim of the course, consisting of four lectures, was to provide a brief introduction to the notion of an almost split sequence and its use in the representation theory of finite-dimensional algebras. The first two sections are reduced, and the next three sections are extended in comparison with the above-mentioned course.

Dedicated to María Inés Platzeck on the occasion of her 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assem, I., Coelho, F.U.: Two-sided gluings of tilted algebras. J. Algebra 269(2), 456–479 (2003). DOI https://doi.org/10.1016/S0021-8693(03)00436-8

  2. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65. Cambridge Univ. Press, Cambridge (2006). DOI https://doi.org/10.1017/CBO9780511614309

  3. Assem, I., Skowroński, A.: On some classes of simply connected algebras. Proc. London Math. Soc. (3) 56(3), 417–450 (1988). DOI https://doi.org/10.1112/plms/s3-56.3.417

  4. Assem, I., Skowroński, A.: Minimal representation-infinite coil algebras. Manuscripta Math. 67(3), 305–331 (1990). DOI https://doi.org/10.1007/BF02568435

    Article  MathSciNet  Google Scholar 

  5. Assem, I., Skowroński, A.: Indecomposable modules over multicoil algebras. Math. Scand. 71(1), 31–61 (1992). DOI https://doi.org/10.7146/math.scand.a-12409

    Article  MathSciNet  Google Scholar 

  6. Assem, I., Skowroński, A.: Multicoil algebras. In: V. Dlab, H. Lenzing (eds.) Representations of Algebras (Ottawa, ON, 1992), CMS Conf. Proc., vol. 14, pp. 29–68. Amer. Math. Soc., Providence, RI (1993)

    Google Scholar 

  7. Auslander, M.: Representation theory of Artin algebras. II. Comm. Algebra 1(4), 269–310 (1974). DOI https://doi.org/10.1080/00927877409412807

  8. Auslander, M., Bautista, R., Platzeck, M.I., Reiten, I., Smalø, S.O.: Almost split sequences whose middle term has at most two indecomposable summands. Canad. J. Math. 31(5), 942–960 (1979). DOI https://doi.org/10.4153/CJM-1979-089-5

    Article  MathSciNet  Google Scholar 

  9. Auslander, M., Bridger, M.: Stable module theory. Mem. Amer. Math. Soc. (94) (1969)

    Google Scholar 

  10. Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences. Comm. Algebra 3(3), 239–294 (1975). DOI https://doi.org/10.1080/00927877508822046

    Article  MathSciNet  Google Scholar 

  11. Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Comm. Algebra 5(5), 443–518 (1977). DOI https://doi.org/10.1080/00927877708822180

    Article  MathSciNet  Google Scholar 

  12. Auslander, M., Reiten, I.: Representation theory of Artin algebras. V. Methods for computing almost split sequences and irreducible morphisms. Comm. Algebra 5(5), 519–554 (1977). DOI https://doi.org/10.1080/00927877708822181

    Article  MathSciNet  Google Scholar 

  13. Auslander, M., Reiten, I.: Representation theory of Artin algebras. VI. A functorial approach to almost split sequences. Comm. Algebra 6(3), 257–300 (1978). DOI https://doi.org/10.1080/00927877808822246

  14. Auslander, M., Reiten, I.: Uniserial functors. In: Dlab and Gabriel [31], pp. 1–47. DOI https://doi.org/10.1007/BFb0088457

  15. Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36. Cambridge Univ. Press, Cambridge (1995). DOI https://doi.org/10.1017/CBO9780511623608

  16. Barot, M.: Introduction to the Representation Theory of Algebras. Springer, Cham (2015). DOI https://doi.org/10.1007/978-3-319-11475-0

  17. Bautista, R.: Irreducible morphisms and the radical of a category. An. Inst. Mat. Univ. Nac. Autónoma México 22, 83–135 (1982)

    Google Scholar 

  18. Bautista, R., Brenner, S.: On the number of terms in the middle of an almost split sequence. In: M. Auslander, E. Lluis (eds.) Representations of Algebras (Puebla, 1980), Lecture Notes in Math., vol. 903, pp. 1–8. Springer, Berlin (1981). DOI https://doi.org/10.1007/BFb0092980

    Google Scholar 

  19. Bautista, R., Gabriel, P., Roĭter, A.V., Salmerón, L.: Representation-finite algebras and multiplicative bases. Invent. Math. 81(2), 217–285 (1985). DOI https://doi.org/10.1007/BF01389052

  20. Bernsten, I.N., Gel’fand, I.M., Ponomarev, V.A.: Coxeter functors, and Gabriel’s theorem (Russian). Uspehi Mat. Nauk 28(2(170)), 19–33 (1973). English transl., Russian Math. Surveys 28(2), 17–32 (1973)

    Google Scholar 

  21. Bongartz, K.: A criterion for finite representation type. Math. Ann. 269(1), 1–12 (1984). DOI https://doi.org/10.1007/BF01455993

  22. Bongartz, K.: Indecomposables are standard. Comment. Math. Helv. 60(3), 400–410 (1985). DOI https://doi.org/10.1007/BF02567423

  23. Bongartz, K., Gabriel, P.: Covering spaces in representation-theory. Invent. Math. 65(3), 331–378 (1981/82). DOI https://doi.org/10.1007/BF01396624

  24. Brenner, S., Butler, M.C.R.: Wild subquivers of the Auslander–Reiten quiver of a tame algebra. In: E.L. Green, B. Huisgen-Zimmermann (eds.) Trends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), Contemp. Math., vol. 229, pp. 29–48. Amer. Math. Soc., Providence, RI (1998). DOI https://doi.org/10.1090/conm/229/03309

  25. Bretscher, O., Gabriel, P.: The standard form of a representation-finite algebra. Bull. Soc. Math. France 111(1), 21–40 (1983)

    Article  MathSciNet  Google Scholar 

  26. Butler, M.C.R., Ringel, C.M.: Auslander–Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1-2), 145–179 (1987). DOI https://doi.org/10.1080/00927878708823416

    Article  MathSciNet  Google Scholar 

  27. Coelho, F.U., Lanzilotta, M.A.: Algebras with small homological dimensions. Manuscripta Math. 100(1), 1–11 (1999). DOI https://doi.org/10.1007/s002290050191

  28. Coelho, F.U., Marcos, E.d.N., Merklen, H.A., Skowroński, A.: Module categories with infinite radical square zero are of finite type. Comm. Algebra 22(11), 4511–4517 (1994). DOI https://doi.org/10.1080/00927879408825084

  29. Crawley-Boevey, W.: Regular modules for tame hereditary algebras. Proc. London Math. Soc. (3) 62(3), 490–508 (1991). DOI https://doi.org/10.1112/plms/s3-62.3.490

    Article  MathSciNet  Google Scholar 

  30. Crawley-Boevey, W.: Modules of finite length over their endomorphism rings. In: H. Tachikawa, S. Brenner (eds.) Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser., vol. 168, pp. 127–184. Cambridge Univ. Press, Cambridge (1992)

    Google Scholar 

  31. Dlab, V., Gabriel, P. (eds.): Representation Theory. II (Ottawa, ON, 1979), Lecture Notes in Math., vol. 832. Springer, Berlin (1980)

    Google Scholar 

  32. Dlab, V., Ringel, C.M.: On algebras of finite representation type. J. Algebra 33, 306–394 (1975). DOI https://doi.org/10.1016/0021-8693(75)90125-8

    Article  MathSciNet  Google Scholar 

  33. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. 6(173), v+57 (1976). DOI https://doi.org/10.1090/memo/0173

    Article  MathSciNet  Google Scholar 

  34. Dlab, V., Ringel, C.M.: The representations of tame hereditary algebras. In: Gordon [38], pp. 329–353

    Google Scholar 

  35. Donovan, P., Freislich, M.R.: The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, vol. 5. Carleton Univ., Ottawa, ON (1973)

    Google Scholar 

  36. Drozd, Ju.A.: Tame and wild matrix problems. In: Dlab and Gabriel [31], pp. 242–258. DOI https://doi.org/10.1007/BFb0088467

    Chapter  Google Scholar 

  37. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscripta Math. 6, 71–103 (1972). DOI https://doi.org/10.1007/BF01298413

  38. Gordon, R. (ed.): Representation Theory of Algebras (Philadelphia, PA, 1976), Lecture Notes in Pure Appl. Math., vol. 37. Dekker, New York (1978)

    Google Scholar 

  39. Happel, D., Preiser, U., Ringel, C.M.: Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to \(D\) Tr-periodic modules. In: Dlab and Gabriel [31], pp. 280–294

    Google Scholar 

  40. Happel, D., Ringel, C.M.: Tilted algebras. Trans. Amer. Math. Soc. 274(2), 399–443 (1982). DOI https://doi.org/10.2307/1999116

    Article  MathSciNet  MATH  Google Scholar 

  41. Kerner, O.: Tilting wild algebras. J. London Math. Soc. (2) 39(1), 29–47 (1989). DOI https://doi.org/10.1112/jlms/s2-39.1.29

    Article  MathSciNet  Google Scholar 

  42. Lenzing, H., Skowroński, A.: Quasi-tilted algebras of canonical type. Colloq. Math. 71(2), 161–181 (1996). DOI https://doi.org/10.4064/cm-71-2-161-181

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, S.P.: Degrees of irreducible maps and the shapes of Auslander–Reiten quivers. J. London Math. Soc. (2) 45(1), 32–54 (1992). DOI https://doi.org/10.1112/jlms/s2-45.1.32

    Article  MathSciNet  Google Scholar 

  44. Liu, S.P.: Almost split sequences for nonregular modules. Fund. Math. 143(2), 183–190 (1993). DOI https://doi.org/10.4064/fm-143-2-183-190

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, S.P.: Semi-stable components of an Auslander–Reiten quiver. J. London Math. Soc. (2) 47(3), 405–416 (1993). DOI https://doi.org/10.1112/jlms/s2-47.3.405

    Article  MathSciNet  Google Scholar 

  46. Malicki, P., de la Peña, J.A., Skowroński, A.: On the number of terms in the middle of almost split sequences over cycle-finite Artin algebras. Cent. Eur. J. Math. 12(1), 39–45 (2014). DOI https://doi.org/10.2478/s11533-013-0328-3

    Article  MathSciNet  MATH  Google Scholar 

  47. Malicki, P., Skowroński, A.: Algebras with separating almost cyclic coherent Auslander–Reiten components. J. Algebra 291(1), 208–237 (2005). DOI https://doi.org/10.1016/j.jalgebra.2005.03.021

    Article  MathSciNet  MATH  Google Scholar 

  48. Nazarova, L.A.: Representations of quivers of infinite type (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 752–791 (1973). English transl.,Math. USSR-Izv. 7(4) 749–792 (1973)

    Article  Google Scholar 

  49. de la Peña, J.A., Skowroński, A.: Algebras with cycle-finite Galois coverings. Trans. Amer. Math. Soc. 363(8), 4309–4336 (2011). DOI https://doi.org/10.1090/S0002-9947-2011-05256-6

    Article  MathSciNet  MATH  Google Scholar 

  50. de la Peña, J.A., Takane, M.: On the number of terms in the middle of almost split sequences over tame algebras. Trans. Amer. Math. Soc. 351(9), 3857–3868 (1999). DOI https://doi.org/10.1090/S0002-9947-99-02137-6

    Article  MathSciNet  MATH  Google Scholar 

  51. de la Peña, J.A., Tomé, B.: Iterated tubular algebras. J. Pure Appl. Algebra 64(3), 303–314 (1990). DOI https://doi.org/10.1016/0022-4049(90)90064-O

    Article  MathSciNet  MATH  Google Scholar 

  52. Platzeck, M.I., Auslander, M.: Representation theory of hereditary Artin algebras. In: Gordon [38], pp. 389–424

    Google Scholar 

  53. Pogorzały, Z., Skowroński, A.: On algebras whose indecomposable modules are multiplicity-free. Proc. London Math. Soc. (3) 47(3), 463–479 (1983). DOI https://doi.org/10.1112/plms/s3-47.3.463

    Article  MathSciNet  Google Scholar 

  54. Reiten, I., Skowroński, A.: Characterizations of algebras with small homological dimensions. Adv. Math. 179(1), 122–154 (2003). DOI https://doi.org/10.1016/S0001-8708(02)00029-4

    Article  MathSciNet  MATH  Google Scholar 

  55. Reiten, I., Skowroński, A.: Generalized double tilted algebras. J. Math. Soc. Japan 56(1), 269–288 (2004). DOI https://doi.org/10.2969/jmsj/1191418706

    Article  MathSciNet  MATH  Google Scholar 

  56. Ringel, C.M.: Representations of \(k\)-species and bimodules. J. Algebra 41(2), 269–302 (1976). DOI https://doi.org/10.1016/0021-8693(76)90184-8

    Article  MathSciNet  MATH  Google Scholar 

  57. Ringel, C.M.: Finite dimensional hereditary algebras of wild representation type. Math. Z. 161(3), 235–255 (1978). DOI https://doi.org/10.1007/BF01214506

    Article  MathSciNet  MATH  Google Scholar 

  58. Ringel, C.M.: The spectrum of a finite-dimensional algebra. In: F. van Oystaeyen (ed.) Ring Theory (Antewrp, 1978), Lecture Notes in Pure and Appl. Math., vol. 51, pp. 535–597. Dekker, New York (1979)

    Google Scholar 

  59. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099. Springer, Berlin (1984). DOI https://doi.org/10.1007/BFb0072870

  60. Roiter, A.V.: Unboundedness of the dimensions of the indecomposable representations of an algebra which has infinitely many indecomposable representations (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 32, 1275–1282 (1968)

    MathSciNet  Google Scholar 

  61. Schiffler, R.: Quiver representations. CMS Books Math./Ouvrages Math. SMC. Springer, Cham (2014). DOI https://doi.org/10.1007/978-3-319-09204-1

    MATH  Google Scholar 

  62. Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 2. Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Stud. Texts, vol. 71. Cambridge Univ. Press, Cambridge (2007). DOI https://doi.org/10.1017/CBO9780511619212

  63. Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 3. Representation-Infinite Tilted Algebras, London Math. Soc. Stud. Texts, vol. 72. Cambridge Univ. Press, Cambridge (2007). DOI https://doi.org/10.1017/CBO9780511619403

  64. Skowroński, A.: Generalized standard Auslander–Reiten components. J. Math. Soc. Japan 46(3), 517–543 (1994). DOI https://doi.org/10.2969/jmsj/04630517

    Article  MathSciNet  MATH  Google Scholar 

  65. Skowroński, A.: Cycle-finite algebras. J. Pure Appl. Algebra 103(1), 105–116 (1995). DOI https://doi.org/10.1016/0022-4049(94)00094-Y

    Article  MathSciNet  MATH  Google Scholar 

  66. Skowroński, A.: Simply connected algebras of polynomial growth. Compositio Math. 109(1), 99–133 (1997). DOI https://doi.org/10.1023/A:1000245728528

    Article  MathSciNet  MATH  Google Scholar 

  67. Skowroński, A.: Tame quasi-tilted algebras. J. Algebra 203(2), 470–490 (1998). DOI https://doi.org/10.1006/jabr.1997.7328

    Article  MathSciNet  MATH  Google Scholar 

  68. Skowroński, A., Smalø, S.O., Zacharia, D.: On the finiteness of the global dimension for Artinian rings. J. Algebra 251(1), 475–478 (2002). DOI https://doi.org/10.1006/jabr.2001.9130

    Article  MathSciNet  MATH  Google Scholar 

  69. Skowroński, A., Waschbüsch, J.: Representation-finite biserial algebras. J. Reine Angew. Math. 345, 172–181 (1983). DOI https://doi.org/10.1515/crll.1983.345.172

    Article  MathSciNet  MATH  Google Scholar 

  70. Skowroński, A., Yamagata, K.: Frobenius Algebras. I. Basic Representation Theory. EMS Textbk. Math. Eur. Math. Soc., Zürich (2011). DOI https://doi.org/10.4171/102

  71. Wald, B., Waschbüsch, J.: Tame biserial algebras. J. Algebra 95(2), 480–500 (1985). DOI https://doi.org/10.1016/0021-8693(85)90119-X

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang, Y.B.: The structure of stable components. Canad. J. Math. 43(3), 652–672 (1991). DOI https://doi.org/10.4153/CJM-1991-038-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed with the support of the research grant from the National Science Center, Poland, DEC-2011/02/A/ST1/00216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Malicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malicki, P. (2018). Auslander–Reiten Theory for Finite-Dimensional Algebras. In: Assem, I., Trepode, S. (eds) Homological Methods, Representation Theory, and Cluster Algebras. CRM Short Courses. Springer, Cham. https://doi.org/10.1007/978-3-319-74585-5_2

Download citation

Publish with us

Policies and ethics