Skip to main content

A Crystallographic Review of Alkali Borate Salts and Ab Initio Study of Borate Ions/Molecules

  • Conference paper
  • First Online:
Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

Abstract

The crystal structures of alkali metal borate salts are reviewed. A wide diversity of structures is noted. Structures with discrete ions containing two or more boron atoms are targeted for further study with ab initio methods (HF, B3LYP, and MP2) using modest basis sets (6-31G*, 6-31+G* and 6-311+G*). The ions identified for study are: [B3O6]3−, [B3O5(OH)2]3−, [B3O4(OH)4]3−, [B3O3(OH)4], [B4O5(OH)4]2−, [B5O6(OH)4], [B2O5]4−, and [B4O9]6−. Some structurally related ions are examined, and an investigation of the diborates launched, including [B2O(OH)6]2−, observed in the magnesium salt, and [B2(OH)7], postulated as the intermediate responsible for signal exchange between borate anion and boric acid in 11B NMR. The B-O bond distances and general structures are in good agreement with both crystallographic data and previous ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pye CC (2018) An ab initio study of boric acid, borate, and their interconversion. Prog Theor Chem Phys 31:143–177

    Google Scholar 

  2. Konig H, Hoppe R (1977) Zur Kenntnis von Na3BO3. Z Anorg Allg Chem 434:225–232 (in German)

    Google Scholar 

  3. Menchetti S, Sabelli C (1982) Structure of hydrated sodium borate Na2[BO2(OH)]. Acta Crystallogr B 38:1282–1284

    Article  Google Scholar 

  4. Block S, Perloff A (1963) The direct determination of the crystal structure of NaB(OH)4.2H2O. Acta Crystallogr 16:1233–1238

    Google Scholar 

  5. Csetenyi LJ, Glasser FP, Howie RA (1993) Structure of sodium tetrahydroxyborate. Acta Crystallogr C 49:1039–1041

    Article  Google Scholar 

  6. Andrieux J, Goutaudier C, Laversenne L, Jeanneau E, Miele P (2010) Synthesis, characterization, and crystal structure of a new trisodium triborate, Na3[B3O4(OH)4]. Inorg Chem 49:4830–4835

    Article  CAS  PubMed  Google Scholar 

  7. Corazza E, Menchetti S, Sabelli C (1975) The crystal structure of Na3[B3O5(OH)2]. Acta Crystallogr B 31:1993–1997

    Article  Google Scholar 

  8. Marezio M, Plettinger HA, Zachariasen WH (1963) The bond lengths in the sodium metaborate structure. Acta Crystallogr 16:594–595

    Article  CAS  Google Scholar 

  9. Menchetti S, Sabelli C (1979) A new borate polyanion in the structure of Na8[B12O20(OH)4]. Acta Crystallogr B 35:2488–2493

    Article  CAS  Google Scholar 

  10. Menchetti S, Sabelli C (1977) The crystal structure of synthetic sodium pentaborate monohydrate. Acta Crystallogr B 33:3730–3733

    Article  Google Scholar 

  11. Menchetti S, Sabelli C, Trosti-Ferroni R (1982) The structure of sodium borate Na3[B5O9].H2O. Acta Crystallogr B 38:2987–2991

    Google Scholar 

  12. Font Tullot JM (1947) El borax como estructura cristalina en cadenas. Estud Geol 7:13–20 (in Spanish)

    Google Scholar 

  13. Norimoto N (1956) The crystal structure of borax. Mineral J 2:1–18

    Article  Google Scholar 

  14. Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s Salt) and sodium tetraborate decahydrate (Borax). Redetermination by neutron diffraction. Acta Crystallogr B 34:3502–3510

    Article  Google Scholar 

  15. Gainsford GJ, Kemmitt T, Higham C (2008) Redetermination of the borax structure from laboratory X-ray data at 145 K. Acta Crystallogr E 64:i24–i25

    Article  CAS  Google Scholar 

  16. Giacovazzo C, Menchetti S, Scordari F (1973) The crystal structure of tincalconite. Am Mineral 58:523–530

    CAS  Google Scholar 

  17. Powell DR, Gaines DF, Zerella PJ, Smith RA (1991) Refinement of the structure of tincalconite. Acta Crystallogr C 47:2279–2282

    Article  Google Scholar 

  18. Luck RL, Wang G (2002) On the nature of tincalconite. Am Mineral 87:350–354

    Article  CAS  Google Scholar 

  19. Ross V, Edwards JO (1959) On the crystal structure of kernite, Na2B4O7.4H2O. Acta Crystallogr 12:258

    Google Scholar 

  20. Giese RF Jr (1966) Crystal structure of kernite, Na2B4O6(OH)2•3H2O. Science 154:1453–1454

    Google Scholar 

  21. Cialdi G, Corazza E, Sabelli C (1967) La struttura cristallina della kernite, Na2B4O6(OH)2 3H2O. Rend. Lincei Sc Fis Mat Nat Ser 8, 42:236–251 (in Italian)

    Google Scholar 

  22. Cooper WF, Larsen FK, Coppens P, Giese RF (1973) Electron population analysis of accurate diffraction data. V. Structure and one-center charge refinement of the light-atom mineral kernite, Na2B4O6(OH)2•3H2O. Am Mineral 58:21–31

    Google Scholar 

  23. Menchetti S, Sabelli C (1978) The crystal structure of Na2[B4O6(OH)2]. Acta Crystallogr B 34:1080–1084

    Article  Google Scholar 

  24. Krogh-Moe J (1974) The crystal structure of sodium diborate, Na2O.2B2O3. Acta Crystallogr B 30:578–582

    Article  CAS  Google Scholar 

  25. Cannillo E, Dal Negro A, Ungaretti L (1973) The crystal structure of ezcurrite. Am Mineral 58:110–115

    CAS  Google Scholar 

  26. Corazza E, Menchetti S, Sabelli C (1975) The crystal structure of nasinite, Na2[B5O8(OH)].2H2O. Acta Crystallogr B 31:2405–2410

    Google Scholar 

  27. Wang Y, Pan S, Tian X, Zhou Z, Liu G, Wang J, Jia D (2009) Synthesis, structure, and properties of the noncentrosymmetric hydrated borate Na2B5O8(OH)•2H2O. Inorg Chem 48:7800–7804

    Google Scholar 

  28. Liu Z-H, Li L-Q, Wang M-Z (2006) Synthesis, crystal structure and thermal behavior of Na4[B10O16(OH)2]•4H2O. J Alloys Compd 407:334–339

    Google Scholar 

  29. Corazza E, Menchetti S, Sabelli C (1974) The crystal structure of biringuccite, Na4[B10O16(OH)2] •2H2O. Am Mineral 59:1005–1015

    Google Scholar 

  30. Dal Negro A, Martin Pozas JM, Ungaretti L (1975) The crystal structure of ameghinite. Am Mineral 60:879–883

    Google Scholar 

  31. Krogh-Moe J (1974) The crystal structure of α sodium triborate, α-Na2O.3B2O3. Acta Crystallogr B 30:747–752

    Google Scholar 

  32. Krogh-Moe J (1972) The crystal structure of a sodium triborate modification, β-Na2O.3B2O3. Acta Crystallogr B 28:1571–1576

    Google Scholar 

  33. Hyman A, Perloff A, Mauer F, Block S (1967) The crystal structure of sodium tetraborate. Acta Crystallogr 22:815–821

    Article  CAS  Google Scholar 

  34. Merlino S, Sartori F (1972) The crystal structure of sborgite, NaB5O6(OH)4.3H2O. Acta Crystallogr B 28:3559–3567

    Google Scholar 

  35. Menchetti S, Sabelli C (1978) The crystal structure of NaB5O6(OH)4. Acta Crystallogr B 34:45–49

    Article  Google Scholar 

  36. Zachariasen WH (1937) The crystal structure of potassium metaborate, K3(B3O6). J Chem Phys 5:919–922

    Article  CAS  Google Scholar 

  37. Schneider W, Carpenter GB (1970) Bond lengths and thermal parameters of potassium metaborate, K3B3O6. Acta Crystallogr B 26:1189–1191

    Article  CAS  Google Scholar 

  38. Marezio M, Plettinger HA, Zachariasen WH (1963) The crystal structure of potassium tetraborate tetrahydrate. Acta Crystallogr 16:975–980

    Article  CAS  Google Scholar 

  39. Krogh-Moe J (1961) Unit-cell data for some anhydrous potassium borates. Acta Crystallogr 14:68

    Article  CAS  Google Scholar 

  40. Krogh-Moe J (1972) The crystal structure of potassium diborate, K2O.2B2O3. Acta Crystallogr B 28:3089–3093

    Google Scholar 

  41. Marezio M (1969) The crystal structure of K2[B5O8(OH)].2H2O. Acta Crystallogr B 25:1787–1795

    Google Scholar 

  42. Zhang H-X, Zhang J, Zheng S-T, Yang G-Y (2005) Two new potassium borates, K4B10O15(OH)4 with stepped chain and KB5O7(OH)2•H2O with double helical chain. Cryst Growth Des 5:157–161

    Google Scholar 

  43. Salentine CG (1987) Synthesis, characterization, and crystal structure of a new potassium borate, KB3O5•3H2O. Inorg Chem 26:128–132

    Google Scholar 

  44. Wang G-M, Sun Y-Q, Zheng S-T, Yang G-Y (2006) Synthesis and crystal structure of a novel potassium borate with an unprecedented [B12O16(OH)8]4− anion. Z Anorg Allg Chem 632:1586–1590

    Article  CAS  Google Scholar 

  45. Li H-J, Liu Z-H, Sun L-M (2007) Synthesis, crystal structure, vibrational spectroscopy and thermal behavior of the first alkali metal hydrated hexaborate: K2[B6O9(OH)2]. Chin J Chem 25:1131–1134

    Article  CAS  Google Scholar 

  46. Bubnova RS, Fundamenskii VS, Filatov SK, Polyakova IG (2004 ) Crystal structure and thermal behavior of KB3O5. Doklady Phys Chem 398:249–253

    Google Scholar 

  47. Krogh-Moe J (1974) The crystal structure of pentapotassium enneakaidekaborate, 5K2O.19B2O3. Acta Crystallogr B 30:1827–1832

    Google Scholar 

  48. Zachariasen WH (1937) The crystal structure of potassium acid dihydronium pentaborate KH2(H3O)2B5O10, (Potassium Pentaborate Tetrahydrate). Z Kristallogr 98:266–274

    Google Scholar 

  49. Cook WR Jr, Jaffe H (1957) The crystallographic, elastic, and piezoelectric properties of ammonium pentaborate and potassium pentaborate. Acta Crystallogr 10:705–707

    Article  CAS  Google Scholar 

  50. Zachariasen WH, Plettinger HA (1963) Refinement of the structure of potassium pentaborate tetrahydrate. Acta Crystallogr 16:376–379

    Article  CAS  Google Scholar 

  51. Gao Y-H (2011) Potassium decaborate monohydrate. Acta Crystallogr E 67:i57

    Article  CAS  Google Scholar 

  52. Wu Q (2011) Potassium pentaborate. Acta Crystallogr E 67:i67

    Article  CAS  Google Scholar 

  53. Krogh-Moe J (1959) On the structural relationship of vitreous potassium pentaborate to the crystalline modifications. Arkiv Kemi 14:567–572

    CAS  Google Scholar 

  54. Krogh-Moe J (1972) The crystal structure of the high-temperature modification of potassium pentaborate. Acta Crystallogr B 28:168–172

    Article  CAS  Google Scholar 

  55. Krogh-Moe J (1959) The crystal structures of potassium pentaborate, K2O.5B2O3, and the isomorphous rubidium compound. Arkiv Kemi 14:439–449

    Google Scholar 

  56. Krogh-Moe J (1965) Least-squares refinement of the crystal structure of potassium pentaborate. Acta Crystallogr 18:1088–1089

    Article  CAS  Google Scholar 

  57. He M, Okudera H, Simon A, Kohler J, Jin S, Chen X (2013) Structure of Li4B2O5: high-temperature monoclinic and low-temperature orthorhombic forms. J Solid State Chem 197:466–470

    Article  CAS  Google Scholar 

  58. Rousse G, Baptiste B, Lelong G (2014) Crystal structures of Li6B4O9 and Li3B11O18 and application of the dimensional reduction formalism to lithium borates. Inorg Chem 53:6034–6041

    Article  CAS  PubMed  Google Scholar 

  59. Touboul M, Betourne E, Nowogrocki G (1995) Crystal structure and dehydration process of Li(H2O)4B(OH)4•2H2O. J Solid State Chem 115:549–553

    Google Scholar 

  60. Zachariasen WH (1964) The crystal structure of lithium metaborate. Acta Crystallogr 17:749–751

    Article  CAS  Google Scholar 

  61. Hohne E (1964) Die Kristallstruktur des LiB(OH)4. Z Chem 4:431–432 (in German)

    Article  Google Scholar 

  62. Fronczek FR, Aubry DA, Stanley GG (2001) Refinement of lithium tetrahydroxoborate with low-temperature CCD data. Acta Crystallogr E 57:i62–i63

    Article  CAS  Google Scholar 

  63. Marezio M, Remeika JP (1966) Polymorphism of LiMO2 compounds and high-pressure single-crystal synthesis of LiBO2. J Chem Phys 44:3348–3353

    Article  CAS  Google Scholar 

  64. Louer D, Louer M, Touboul M (1992) Crystal structure determination of lithium diborate hydrate, LiB2O3(OH).H2O, from X-ray powder diffraction data collected with a curved position-sensitive detector. J Appl Crystallogr 25:617–623

    Google Scholar 

  65. Krogh-Moe J (1962) The crystal structure of lithium diborate, Li2O.2B2O3. Acta Crystallogr 15:190–193

    Google Scholar 

  66. Krogh-Moe J (1968) Refinement of the crystal structure of lithium diborate, Li2O.2B2O3. Acta Crystallogr B 24:179–181

    Google Scholar 

  67. Natarajan M, Faggiani R, Brown ID (1979) Dilithium tetraborate, Li2B4O7. Cryst Struct Commun 8:367–370

    CAS  Google Scholar 

  68. Radaev SF, Muradyan LA, Malakhova LF, Burak YV, Simonov VI (1989) Atomic Structure and electron density of lithium tetraborate Li2B4O7. Sov Phys Crystallogr 34:842–845

    Google Scholar 

  69. Jiang A, Lei S, Huang Q, Chen T, Ke D (1990) Structure of lithium heptaborate, Li3B7O12. Acta Crystallogr C 46:1999–2001

    Article  Google Scholar 

  70. Radaev SF, Genkina EA, Lomonov VA, Maksimov BA, Pisarevskii YV, Chelokov MN, Simonov VI (1991) Distribution of deformation electron density in lithium triborate LiB3O5. Sov Phys Crystallogr 36:803–807

    Google Scholar 

  71. Radaev SF, Maximov BA, Simonov VI, Andreev BV, D’Yakov VA (1992) Deformation density in lithium triborate, LiB3O5. Acta Crystallogr B 48:154–160

    Article  Google Scholar 

  72. Le Henaff C, Hansen NK, Protas J, Marnier G (1997) Electron density distribution in LiB3O5 at 293 K. Acta Crystallogr B 53:870–879

    Article  Google Scholar 

  73. Sennova N, Albert B, Bubnova R, Krzhizhanovskaya M, Filatov S (2014) Anhydrous lithium borate, Li3B11O18, crystal structure, phase transition and thermal expansion. Z Kristallogr 229(7):497–504

    CAS  Google Scholar 

  74. Cardenas A, Solans J, Byrappa K, Shekar KVK (1993) Structure of lithium catena-Poly[3,4-dihydroxopentaborate-1:5-mu-oxo]. Acta Crystallogr C 49:645–647

    Article  Google Scholar 

  75. Zviedre I, Ievins A (1974) Crystalline structure of rubidium monoborate RbBO2•4/3 H2O. Latvijas PSR Zinatnu Akademijas Vestis Kimijas Seria 4:395–400 (in Russian)

    Google Scholar 

  76. Schmid S, Schnick W (2004) Rubidium metaborate, Rb3B3O6. Acta Crystallogr C 60:i69–i70

    Article  CAS  PubMed  Google Scholar 

  77. Touboul M, Penin N, Nowogrocki G (2000) Crystal structure and thermal behavior of Rb2[B4O5(OH)4]•3.6H2O. J Solid State Chem 149:197–202

    Google Scholar 

  78. Krzhizhanovskaya MG, Bubnova RS, Bannova II, Filatov SK (1997) Crystal structure of Rb2B4O7. Crystallogr Rep 42:226–231

    Google Scholar 

  79. Bubnova RS, Krivovichev SV, Shakhverdova IP, Filatov SK, Burns PC, Krzhizhanovskaya MG, Polyakova IG (2002) Synthesis, crystal structure and thermal behavior of Rb3B7O12, a new compound. Solid State Sci 4:985–992

    Article  CAS  Google Scholar 

  80. Krzhizhanovskaya MG, Kabalov YK, Bubnova RS, Sokolova EV, Filatov SK (2000) Crystal structure of the low-temperature modification of α-RbB3O5. Crystallogr Rep 45:572–577

    Article  Google Scholar 

  81. Krzhizhanovskaya MG, Bubnova RS, Fundamentskii VS, Bannova II, Polyakova IG, Filatov SK (1998) Crystal structure and thermal expansion of high-temperature β-RbB3O5 modification. Crystallogr Rep 43:21–25

    Google Scholar 

  82. Liu Z-H, Li L-Q, Zhang W-J (2006) Two new borates containing the first examples of large isolated polyborate anions: chain [B7O9(OH)5]2− and ring [B14O20(OH)6]4−. Inorg Chem 45:1430–1432

    Article  CAS  PubMed  Google Scholar 

  83. Behm H (1984) Rubidium pentaborate tetrahydrate, Rb[B5O6(OH)4].2H2O. Acta Crystallogr C 40:217–220

    Google Scholar 

  84. Penin N, Seguin L, Touboul M, Nowogrocki G (2001) Crystal structures of three MB5O8 (M = Cs, Rb) borates (α-CsB5O8, γ-CsB5O8, and β-RbB5O8). J Solid State Chem 161:205–213

    Google Scholar 

  85. Schlager M, Hoppe R (1994) Darstellung und Kristallstruktur von CsBO2. Z Anorg Allg Chem 620:1867–1871 (in German)

    Google Scholar 

  86. Touboul M, Penin N, Nowogrocki G (1999) Crystal structure and thermal behavior of Cs2[B4O5(OH)4] 3H2O. J Solid State Chem 143:260–265

    Article  CAS  Google Scholar 

  87. Nowogrocki G, Penin N, Touboul M (2003) Crystal structure of Cs3B7O12 containing a new large polyanion with 63 boron atoms. Solid State Sci 5:795–803

    Google Scholar 

  88. Krogh-Moe J (1960) The crystal structure of cesium triborate, Cs2O.3B2O3. Acta Crystallogr 13:889–892

    Google Scholar 

  89. Krogh-Moe J (1974) Refinement of the crystal structure of caesium triborate, Cs2O.3B2O3. Acta Crystallogr B 30:1178–1180

    Google Scholar 

  90. Penin N, Seguin L, Touboul M, Nowogrocki G (2002) A new cesium borate Cs3B13O21. Solid State Sci 4:67–76

    Article  CAS  Google Scholar 

  91. Behm H (1984) Structure determination on a twinned crystal of cesium pentaborate tetrahydrate, Cs[B5O6(OH)4].2H2O. Acta Crystallogr C 40:1114–1116

    Google Scholar 

  92. Bubnova RS, Fundamentsky VS, Anderson JE, Filatov SK (2002) New layered polyanion in α-CsB5O8 high-temperature modification. Solid State Sci 4:87–91

    Google Scholar 

  93. Krogh-Moe J, Ihara M (1967) The crystal structure of caesium enneaborate, Cs2O.9B2O3. Acta Crystallogr 23:427–430

    Google Scholar 

  94. Gupta A, Tossell JA (1983) Quantum mechanical studies of distortions and polymerization of borate polyhedra. Am Mineral 68:989–995

    CAS  Google Scholar 

  95. Zhang ZG, Boisen MB Jr, Finger LW, Gibbs GV (1985) Molecular mimicry of the geometry and charge density distribution of polyanions in borate minerals. Am Mineral 70:1238–1247

    CAS  Google Scholar 

  96. Oi T (2000) Calculations of reducted partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J Nucl Sci Tech 37(2):166–172

    Article  CAS  Google Scholar 

  97. Oi T (2000) Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z Naturforsch A 55:623–628

    Article  CAS  Google Scholar 

  98. Zhou Y, Fang C, Fang Y, Zhu F (2011) Polyborates in aqueous borate solution: a Raman and DFT theory investigation. Spectrochim Acta A 83:82–87

    Article  CAS  Google Scholar 

  99. Beckett MA, Davies RA, Thomas CD (2014) Computational studies on gas phase polyborate anions. Comput Theor Chem 1044:74–79

    Article  CAS  Google Scholar 

  100. Frisch MJ et al (2004) Gaussian 03, revision D.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  101. Ishihara K, Nagasawa A, Umemoto K, Ito H, Saito K (1994) Kinetic study of boric acid-borate interchange in aqueous solution by 11B NMR spectroscopy. Inorg Chem 33:3811–3816

    Article  CAS  Google Scholar 

  102. Stadler HP (1947) The cell dimensions and space-group of pinnoite. Mineral Mag 28:26–28

    Article  CAS  Google Scholar 

  103. Paton F, MacDonald SGG (1957) The crystal structure of pinnoite. Acta Crystallogr 10:653–656

    Article  CAS  Google Scholar 

  104. Krogh-Moe J (1967) A note on the structure of pinnoite. Acta Crystallogr 23:500–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CCP acknowledges ACENet for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory C. Pye .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 574 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pye, C.C. (2018). A Crystallographic Review of Alkali Borate Salts and Ab Initio Study of Borate Ions/Molecules. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_7

Download citation

Publish with us

Policies and ethics