Difference of Chirality of the Electron Between Enantiomers of H\(_2\)X\(_2\)

  • Masato Senami
  • Ken Inada
  • Kota Soga
  • Masahiro Fukuda
  • Akitomo Tachibana
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

The integrated chirality density of H\(_2\)X\(_2\) molecules is studied in viewpoints of the internal torque for the electron spin. Since the chirality density is proportional to the zeta potential, which is the potential of the zeta force, one of the torque for the electron spin, the distribution of the chirality density affects the distribution of the internal torque in molecules. It is seen that the integrated chirality density is larger for the larger atomic number. It is found that the integrated chirality density of H\(_2\)Te\(_2\) has the same sign as the parity-violating energy, while those of H\(_2\)O\(_2\) and H\(_2\)S\(_2\) are opposite to the sign of the parity-violating energy, and the dependence of the integrated chirality density of H\(_2\)Se\(_2\) on dihedral angle is significantly different from that of the parity-violating energy.

References

  1. 1.
    Meyerhenrich U (2008) Amino acids and the asymmetry of life. Springer, HeidelbergGoogle Scholar
  2. 2.
    Mason SF (1984) Nature 311:19CrossRefGoogle Scholar
  3. 3.
    Hegstrom RA, Rein DW, Sandars PGH (1980) J Chem Phys 73:1CrossRefGoogle Scholar
  4. 4.
    Bast R, Koers A, Gomes ASP, Iliaš M, Visscher L, Schwerdtfeger P, Saue T (2011) Phys Chem Chem Phys 13:864Google Scholar
  5. 5.
    Tachibana A (2001) J Chem Phys 115:3497; J Mol Model 11:301 (2005); J Mol Struct: (THEOCHEM), 943:138 (2010). see also Tachibana A (2017) New aspects of quantum electrodynamics. SpringerGoogle Scholar
  6. 6.
    Fukuda M, Senami M, Tachibana A (2013) Prog Theor Chem Phys 27:131; Fukuda M, Soga K, Senami M, Tachibana A (2016) Int J Quant Chem 116:920Google Scholar
  7. 7.
    Senami M, Nishikawa J, Hara T, Tachibana A (2010) J Phys Soc Jpn 79:084302; Hara T, Senami M, Tachibana A (2012) Phys Lett A 376:1434; Fukuda M, Soga K, Senami M, Tachibana A (2013) Phys Rev A 93:012518; Fukuda M, Ichikawa K, Senami M, Tachibana A (2016) AIP Adv 6:025108Google Scholar
  8. 8.
    Laerdahrl JK, Schwerdtfeger P (1999) Phys Rev A 60:4439CrossRefGoogle Scholar
  9. 9.
    Thyssen J, Laerdahrl JK, Schwerdtfeger P (2000) Phys Rev Lett 85:3105CrossRefGoogle Scholar
  10. 10.
    Shee A, Visscher L, Saue T (2016) J Chem Phys 145:184107CrossRefGoogle Scholar
  11. 11.
    Patrignani C et al (2016) Particle data group. Chin Phys C 40:100001CrossRefGoogle Scholar
  12. 12.
    Sakurai JJ (1976) Advanced quantum mechanics. (Addison-Wesley, Reading, Mass)Google Scholar
  13. 13.
    Tachibana A (2004) Int J Quantum Chem 100:981CrossRefGoogle Scholar
  14. 14.
    Ichikawa K, Nozaki H, Komazawa N, Tachibana A (2012) AIP Adv 2:042195CrossRefGoogle Scholar
  15. 15.
    Tachibana A (2012) Math J Chem 50(669); In: (2013) Ghosh SK, Chattaraj PK (eds) Concepts and methods in modern theoretical chemistry. CRC, Boca Raton, FL, pp 235–251Google Scholar
  16. 16.
    Senami M, Ichikawa K, Tachibana A, QEDynamics http://www.tachibana.kues.kyoto-u.ac.jp/qed
  17. 17.
    Ichikawa K, Fukuda M, Tachibana A (2013) Int J Quantum Chem 113:190Google Scholar
  18. 18.
    Senami M, Miyazato T, Takada S, Ikeda Y, Tachibana A (2013) J Phys Conf Ser 454:012052; Senami M, Ogiso Y, Miyazato T, Yoshino F, Ikeda Y, Tachibana A (2013) Trans Mat Res Soc Jpn 38(4):535Google Scholar
  19. 19.
    Saue T, Visscher L, Jensen HJAa, Bast R, Bakken V, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, Gomes ASP, Helgaker T, Lærdahl JK, Lee YS, Henriksson J, Iliaš M, Jacob ChR, Knecht S, Komorovský S, Kullie O, Larsen CV, Nataraj HS, Norman, P Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, di Remigio R, Ruud K, Sałek P, Schimmelpfennig B, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, Yamamoto S (2014) DIRAC a relativistic ab initio electronic structure program. http://www.diracprogram.org
  20. 20.
    Dyall KG (2012) Theor Chem Acc 99:366 (1998); Theor Chem Acc 115:441 (2006); Theor Chem Acc 117:483 (2007); J Phys Chem A 113:12638 (2009); Theor Chem Acc 131:1217Google Scholar
  21. 21.
    Senami M, Ikeda Y, Fukushima A, Tachibana A (2010) Jpn J Appl Phys 49:115002CrossRefGoogle Scholar
  22. 22.
    Dunning TH Jr (1989) J Chem Phys 90:1007; Kendall RA, Dunning TH Jr, Harrison RJ, J Chem Phys 96:6796 (1992); Woon DE, Dunning TH Jr, J Chem Phys 98:1358 (1993)Google Scholar
  23. 23.
    Dyall KG (2009) J Phys Chem A 113:12638; Theor Chem Acc 108:335 (2002); Chem Acc 115:441 (2006); Theor Chem Acc 117:483 (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Masato Senami
    • 1
  • Ken Inada
    • 1
  • Kota Soga
    • 1
  • Masahiro Fukuda
    • 1
  • Akitomo Tachibana
    • 1
  1. 1.Department of Micro EngineeringKyoto UniversityKyotoJapan

Personalised recommendations