Skip to main content

Advanced Relativistic Energy Approach in Electron-Collisional Spectroscopy of Multicharged Ions in Plasmas

  • Conference paper
  • First Online:
Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics

Abstract

We present the fundamentals of an advanced relativistic approach, based on the Gell-Mann and Low formalism, to studying spectroscopic characteristics of the multicharged ions in plasmas, in particular, computing the electron-ion collision strengths, cross-sections etc. The approach is combined with relativistic many-body perturbation theory with the Debye shielding model Hamiltonian for electron-nuclear and electron-electron systems. The optimized one-electron representation in the perturbation theory zeroth approximation is constructed by means of the correct treating the gauge dependent multielectron contribution of the lowest perturbation theory corrections to the radiation widths of atomic levels. The computation results on the oscillator strengths and energy shifts due to the plasmas environment effect, the electron-collision strengths, collisional excitation and de-excitation rates for a number of the Be- and Ne-like ions of argon, nickel and krypton embedded to different types of plasmas environment (with temperature 0.02–2 keV and electron density 1016–1024 cm−3) are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oks E (2010) In: Oks E, Dalimier E, Stamm R, Stehle C, Gonzalez MA (eds) Spectral line shapes in plasmas and gases. Int J Spectr 1:852581

    Google Scholar 

  2. Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New York

    Google Scholar 

  3. Ivanova EP (2011) Phys Rev A 84:043829 

    Google Scholar 

  4. Ivanova EP, Grant IP (1998) J Phys B Mol Opt Phys 31:2871; Ivanova EP, Zinoviev NA (2001) Phys Lett A 274:239

    Google Scholar 

  5. Khetselius OYu (2011) Quantum structure of electroweak interaction in heavy finite fermi-systems. Astroprint, Odessa

    Google Scholar 

  6. Glushkov AV (1991) Opt Spectrosc 70:555

    Google Scholar 

  7. Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Mischenko EV, Florko TA (2009) Int J Quant Chem 109(14):3325

    Google Scholar 

  8. Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T135:014022

    Google Scholar 

  9. Glushkov AV, Khetselius OYu, Svinarenko AA (2013) Phys Scripta T153:014029

    Google Scholar 

  10. Svinarenko AA (2014) J Phys Conf Ser 548:012039

    Article  Google Scholar 

  11. Paul S, Ho YK (2010) J Phys B At Mol Opt Phys 43:065701; Kar S, Ho YK (2011) J Phys B At Mol Opt Phys 44:015001

    Google Scholar 

  12. Glushkov AV (2005) Atom in electromagnetic field. KNT, Kiev

    Google Scholar 

  13. Yongqiang L, Jianhua W, Yong H, Jianmin Y (2008) J Phys B At Mol Opt Phys 41:145002

    Google Scholar 

  14. Glushkov AV, Mansarliysky VF, Khetselius OYu, Ignatenko AV, Smirnov AV, Prepelitsa GP (2017) J Phys Conf Ser 810:012034

    Google Scholar 

  15. Glushkov AV, Loboda AV (2007) J Appl Spectr 74:305, Springer

    Google Scholar 

  16. Saha B, Fritzsche S (2007) J Phys B At Mol Opt Phys 40:259

    Google Scholar 

  17. Marrs R, Levine M, Knapp D, Henderson J (1988) Phys Rev Lett 60:1715

    Google Scholar 

  18. Zhang H, Sampson D, Clark R, Mann J (1988) Atom Dat Nuc Dat Tabl 37:17

    Google Scholar 

  19. Reed KJ (1988) Phys Rev A 37:1791; Talukder MR (2008) Appl Phys Lasers Opt 93:576

    Google Scholar 

  20. Smith ACH, Bannister ME, Chung YS, Djuric N, Dunn GH, Wallbank B, Woitke O (1999) Phys Scripta T80:283

    Google Scholar 

  21. Buyadzhi VV (2015) Photoelectronics 24:128

    Google Scholar 

  22. Zeng S, Liu L, Wang JG, Janev RK (2008) J Phys B At Mol Opt Phys 41:135202

    Google Scholar 

  23. Okutsu H, Sako T, Yamanouchi K, Diercksen GHF (2005) J Phys B At Mol Opt Phys 38:917

    Google Scholar 

  24. Nakamura N, Kavanagh AP, Watanabe H, Sakaue HA, Li Y, Kato D, Curell FJ, Ohtani S (2007) J Phys Conf Ser 88:012066

    Google Scholar 

  25. Bannister ME, Djuric N, Woitke O, Dunn GH, Chung Y-S, Smith ACH, Wallbank B, Berrington KA (1999) Int J Mass Spectr 192:39

    Google Scholar 

  26. Badnell NR (2007) J Phys Conf Ser 88:012070; Griffin DC, Balance CP, Mitnik DM, Berengut JC (2008) J Phys B At Mol Opt Phys 41:215201

    Google Scholar 

  27. Glushkov AV, Malinovskaya SV, Prepelitsa G, Ignatenko V (2005) J Phys Conf Ser 11:199

    Google Scholar 

  28. Malinovskaya SV, Glushkov AV, Khetselius OYu, Loboda AV, Lopatkin YuM, Svinarenko AA, Nikola LV, Perelygina TB (2011) Int J Quant Chem 111:288

    Google Scholar 

  29. Glushkov AV, Khetselius OYu, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) Spectr Line Shapes. AIP Conf  Pro 1058:175

    Google Scholar 

  30. Buyadzhi VV, Chernyakova YuG, Antoshkina OA, Tkach TB (2017) Photoelectronics 26:94 

    Google Scholar 

  31. Ivanov LN, Ivanova EP (1979) Atom Dat Nucl Dat Tabl 24:95

    Google Scholar 

  32. Driker MN, Ivanova EP, Ivanov LN, Shestakov AF (1982) J Quant Spectr Rad Transfer 28:531

    Google Scholar 

  33. Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169

    Google Scholar 

  34. Vidolova-Angelova E, Ivanov LN, Ivanova EP, Angelov DA (1986) J Phys B At Mol Opt Phys 19:2053

    Google Scholar 

  35. Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 166:315

    Google Scholar 

  36. Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:513

    Google Scholar 

  37. Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33

    Google Scholar 

  38. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 58–160

    Google Scholar 

  39. Ivanova EP, Glushkov AV (1986) J Quant Spectr Rad Transfer 36:127

    Google Scholar 

  40. Ivanova EP, Gulov AV (1991) Atom Dat Nuc Dat Tabl 49:1

    Google Scholar 

  41. Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365

    Google Scholar 

  42. Ivanov LN, Ivanova EP, Knight L, Molchanov AG (1996) Phys Scripta 53:653

    Google Scholar 

  43. Glushkov AV, Ivanov LN (1992) Preprint of ISAN. AS N-1 Moscow-Troitsk

    Google Scholar 

  44. Glushkov AV, Ivanov LN (1993) J Phys B At Mol Opt Phys 26:L379

    Google Scholar 

  45. Glushkov AV (1990) Sov Phys J 33(1):1

    Article  Google Scholar 

  46. Glushkov AV (1990) J Str Chem 31(4):529

    Article  Google Scholar 

  47. Glushkov AV (1992) JETP Lett 55:97

    Google Scholar 

  48. Glushkov A V (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 231–252

    Google Scholar 

  49. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa, p 700

    Google Scholar 

  50. Khestelius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa, p 210

    Google Scholar 

  51. Glushkov AV (2013) Advances in quantum methods and applications in chemistry, physics and biology. In: Hotokka M, Maruani J, Brändas J, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 27. Springer, Cham, pp 161–177

    Google Scholar 

  52. Glushkov AV, Khetselius OYu, Svinarenko AA, Prepelitsa GP (2010) In: Duarte FJ (ed) Coherence and ultrashort pulsed emission, InTech, Rijeka, pp 159–186

    Google Scholar 

  53. Svinarenko AA, Glushkov AV, Khetselius OYu, Ternovsky VB, Dubrovskaya YuV, Kuznetsova AA, Buyadzhi VV (2017) In: Orjuela JEA (ed) Rare earth element, InTech, pp 83–104

    Google Scholar 

  54. Glushkov AV, Khetselius OYu, Svinarenko AA, Buyadzhi VV, Ternovsky VB, Kuznetsova AA, Bashkarev PG (2017) In: Uzunov DI (ed) Recent studies in perturbation theory, InTech, pp 131–150

    Google Scholar 

  55. Buyadzhi VV, Glushkov AV, Lovett L (2014) Photoelectronics 23:38

    Google Scholar 

  56. Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Sensor Electr Microsyst Techn 12(4):27

    Google Scholar 

  57. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 525–541

    Google Scholar 

  58. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Europ Phys J ST 160:195

    Google Scholar 

  59. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Mol Phys 106:1257

    Google Scholar 

  60. Glushkov AV, Khetselius OY, Svinarenko AA (2012) Advances in the theory of quantum systems in chemistry and physics. In: Hoggan P, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 22. Springer, Dordrecht, pp 51–68

    Google Scholar 

  61. Glushkov AV, Khetselius OYu, Lovett L (2010) Advances in the theory of atomic and molecular systems. In: Piecuch P, Maruani J, Delgado-Barrio G,Wilson S (eds) Progress in theoretical chemistry and physics, vol 20. Springer, Dordrecht, pp 125–152

    Google Scholar 

  62. Glushkov AV, Khetselius YO, Loboda AV, Svinarenko AA (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 543–560

    Google Scholar 

  63. Glushkov AV, Svinarenko AA, Khetselius OYu, Buyadzhi VV,  Florko TA, Shakhman AN (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 29. Springer, Cham, pp 197–217

    Google Scholar 

  64. Khetselius OYu, Zaichko PA, Smirnov AV, Buyadzhi VV, Ternovsky VB, Florko TA, Mansarliysky VF (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, Springer, Cham, pp 271–281

    Google Scholar 

  65. Glushkov AV, Buyadzhi VV, Kvasikova AS, Ignatenko AV, Kuznetsova AA, Prepelitsa GP, Ternovsky V B (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 30. Springer, Cham, pp 169–180

    Google Scholar 

  66. Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 126–132

    Google Scholar 

  67. Glushkov O. Khetselius E Gurnitskaya, Loboda A, Florko VD, Sukharev Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp  507–524

    Google Scholar 

  68. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in the theory of chemical and physical systems. In: Julien P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds). Progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 285–299

    Google Scholar 

  69. Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova YuG, Svinarenko AA, Khetselius OYu (2004) Nucl Phys A Nucl Hadr Phys 734:21

    Google Scholar 

  70. Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Prepelitsa GP (2006) J Phys Conf Ser 35:420

    Google Scholar 

  71. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quant Chem 104:562

    Google Scholar 

  72. Glushkov A, Malinovskaya S, Loboda A, Shpinareva I, Gurnitskaya E, Korchevsky D (2005) J Phys Conf Ser 11:188

    Google Scholar 

  73. Glushkov AV, Malinovskaya SV, Chernyakova YG, Svinarenko AA (2004) Int J Quant Chem 99:889

    Google Scholar 

  74. Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) Int J Quant Chem 99:936

    Google Scholar 

  75. Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OYu, Loboda AV, Lovett L (2009) Int J Quant Chem 109:1717

    Google Scholar 

  76. Khetselius OYu (2009) Int J Quant Chem 109:3330

    Article  CAS  Google Scholar 

  77. Khetselius OYu (2009) Phys Scripta T135:014023

    Article  CAS  Google Scholar 

  78. Khetselius OYu (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio E, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 217–229

    Google Scholar 

  79. Khetselius YO (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio E, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 29. Springer, Cham,  pp 55–76

    Google Scholar 

  80. Khetselius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa

    Google Scholar 

  81. Khetselius OYu (2005) Hyperfine structure of radium. Photoelectronics. 14:83

    Google Scholar 

  82. Khetselius OYu (2012) J Phys Conf Ser 397:012012

    Article  CAS  Google Scholar 

  83. Khetselius OYu, Florko TA, Svinarenko AA, Tkach TB (2013) Phys Scripta T153:014037

    Google Scholar 

  84. Khetselius OYu (2008) Spectral line shape. AIP Conf Proc 1058:363

    Google Scholar 

  85. Khetselius OYu, Glushkov AV, Gurnitskaya EP, Loboda AV, Mischenko EV, Florko TA, Sukharev DE (2008) AIP Conf Proc 1058:231

    Google Scholar 

  86. Khetselius OYu (2007) Photoelectronics 16:129

    Google Scholar 

  87. Khetselius OYu, Gurnitskaya EP (2006) Sensor Electr Microsyst Techn N3, 35–39

    Google Scholar 

  88. Khetselius OYu, Gurnitskaya EP (2006) Sensor Electr and Microsyst Techn Issue 2:25−29

    Google Scholar 

  89. Feller D, Davidson ER (1981) J Chem Phys 74:3977

    Google Scholar 

  90. Froelich P, Davidson ER, Brändas E (1983) Phys Rev A 28:2641

    Google Scholar 

  91. Rittby M, Elander N, Brändas E (1983) Int J Quant Chem 23:865

    Google Scholar 

  92. Yan A, Wang C, Yung Y, Ya KC, Chen GH (2011) J Chem Phys 134:241103

    Google Scholar 

  93. Maruani J (2016) J Chin Chem Soc 63:33

    Article  CAS  Google Scholar 

  94. Pavlov R, Mihailov L, Velchev Ch, Dimitrova-Ivanovich M, Stoyanov Zh, Chamel N, Maruani J (2010) J Phys Conf Ser 253:012075

    Google Scholar 

  95. Dietz K, Heβ BA (1989) Phys Scripta 39:682

    Google Scholar 

  96. Kohn W, Sham LJ (1964) Phys Rev A 140:1133; Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Google Scholar 

  97. Gidopoulos N, Wilson S (2004) The fundamentals of electron density, density matrix and density functional theory in atoms, molecules and the solid state. In: Progress in theoretical chemistry and physics, vol 14. Springer, Berlin

    Google Scholar 

  98. Glushkov A V (2006) Relativistic and correlation effects in spectra of atomic systems. Astroprint, Odessa

    Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to Prof. Jean Maruani and Prof. Alex Wang for invitation to make contributions on the QSCP-XXI workshop (Vancouver, Canada). The useful comments of the anonymous referees are very much acknowledged too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Glushkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushkov, A.V., Buyadzhi, V.V., Svinarenko, A.A., Ternovsky, E.V. (2018). Advanced Relativistic Energy Approach in Electron-Collisional Spectroscopy of Multicharged Ions in Plasmas. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_4

Download citation

Publish with us

Policies and ethics