Computational Study of Jozimine A2, a Naphthylisoquinoline Alkaloid with Antimalarial Activity

  • Mireille K. Bilonda
  • Liliana Mammino
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


Jozimine A2 is a dioncophyllaceae-type naphthylisoquinoline alkaloid isolated from the root bark of an Ancistrocladus species from the Democratic Republic of Congo and exhibiting high antimalarial activity. It is the first naturally occurring dimeric naphthylisoquinoline of this type to be discovered. Its molecule consists of two identical 4′-O-demethyldioncophylline A units, with each unit containing an isoquinoline moiety and a naphthalene moiety. A thorough conformational study of this molecule was performed in vacuo and in three solvents with different polarities and different H-bonding abilities (chloroform, acetonitrile and water), using two levels of theory, HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p). Intramolecular hydrogen bond (IHB) patterns were investigated considering all the possible options. Preferences for the mutual orientations of the moieties were identified through the potential energy profiles for the rotation of the single bonds between moieties. Harmonic vibrational frequencies were calculated to confirm the true-minima nature of stationary points, to obtain the zero point energies and to get indications about IHB strengths from red shifts. Intramolecular hydrogen bonds (O−H⋯O IHBs and O−H⋯π interaction) are the most stabilizing factors. The mutual orientations of the four moieties also have considerable influence and they prefer to be perpendicular to each other.


Alkaloids Antimalarials Intramolecular hydrogen bond Jozimine A2 Naphthyl-isoquinoline alkaloids Mutual orientation Solute-solvent interactions 



M. K. Bilonda expresses her gratitude to the National Research Foundation (NRF) of South Africa for a bursary to support her Ph.D. studies.

Supplementary material

432170_1_En_17_MOESM1_ESM.docx (21 kb)
Table S12 and S13


  1. 1.
    World Health Organization (2014) World malaria report 2014 summary.
  2. 2.
    World Health Organization (2016) World malaria report 2016.
  3. 3.
    Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V (2013) Chem Eur J 19:916–923Google Scholar
  4. 4.
    Bierer DE, Dener JM, Dubenko LG, Gerber RE, Litvak J, Peterli S, Peterli-Roth P, Truong TV, Mao G, Bauer BE (1995) J Med Chem 38:2628Google Scholar
  5. 5.
    Ganellin CR, Mitchell RC, Young RC (1988) In: Melchiorre C, Giannella M (eds) Recent advances in receptor chemistry. Elsevier Science Publishers B.V., Amsterdam, pp 289–306Google Scholar
  6. 6.
    Guha S, Majumdar D, Bhattacharjee AK (1992) J Mol Struct (Theochem) 256:61Google Scholar
  7. 7.
    Sjoberg P, Murray JS, Brinck T, Evans P, Politzer P (1990) J Mol Graph 8:81Google Scholar
  8. 8.
    Karle JM, Bhattacharjee AK (1999) Bioorg Med Chem 7:1769–1774Google Scholar
  9. 9.
    Batagin-Neto A, Lavarda FC (2014) Med Chem Res 23:580–586Google Scholar
  10. 10.
    Naranjo-Montoya OA, Martins LM, da Silva-Filho LC, Batagin-Neto A, Lavarda FC (2015) J Braz Chem Soc 26:832–836Google Scholar
  11. 11.
    Purcell WP, Sundaram K (1969) J Med Chem 12:18–21.
  12. 12.
    Mammino L, Bilonda MK (2017) In: Tadjern A, Pavlov R, Maruani J, Brändas EJ, Delgado-Barrio G (eds) Quantum systems in physics, chemistry, and biology—advances in concepts and applications. Book series Progress in theoretical chemistry and physics. Springer, pp 303–316Google Scholar
  13. 13.
    Boyd MR (1994) J Med Chem 37:1740–1745Google Scholar
  14. 14.
    Becke AD (1993) J Chem Phys 98:5648–5662Google Scholar
  15. 15.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  16. 16.
    Mammino L, Bilonda MK (2016) Theor Chem Acc 135:101.
  17. 17.
    Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219Google Scholar
  18. 18.
    Mammino L, Kabanda MM (2012) Int J Quantum Chem 112:2650–2658Google Scholar
  19. 19.
    Harvey JN (2004) In: Nkaltsoyanis N, McGrady JE (eds) Principles and applications of density functional theory in inorganic chemistry II. Springer, p 170Google Scholar
  20. 20.
    Irikura K, Johnson III RD, Kacker RN (2005) J Phys Chem A 109:8430–8437Google Scholar
  21. 21.
    Barone V, Cossi M (1997) J Chem Phys 107:3210–3221Google Scholar
  22. 22.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093Google Scholar
  23. 23.
    Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417Google Scholar
  24. 24.
    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54Google Scholar
  25. 25.
    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041Google Scholar
  26. 26.
    Tomasi J, Mennucci B, Cancès E (1999) (Theochem) 464:211–226Google Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, PittsburghGoogle Scholar
  28. 28.
    Pascual-Ahuir JL, Silla E (1990) J Comput Chem 11:1047–1047Google Scholar
  29. 29.
    Silla E, Villar F, Nilsson O, Pascual-Ahuir JL, Tapia O (1990) J Mol Graph 8:168–172Google Scholar
  30. 30.
    Silla E, Tunon I, Pascual-Ahuir JL (1991) J Comput Chem 12:1077–1088Google Scholar
  31. 31.
    Reichardt C (2003) Solvents effects in organic chemistry, 3rd edn. Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany, p 82Google Scholar
  32. 32.
    Mammino L, Kabanda MM (2007) J Mol Struct (Theochem) 805:39–52Google Scholar
  33. 33.
    Buemi G, Zuccarello F (2002) J Mol Struct (Theochem) 581:71–85Google Scholar
  34. 34.
    Simperler A, Lampert H, Mikenda W (1998) J Mol Struct 448:191–199Google Scholar
  35. 35.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028Google Scholar
  36. 36.
    Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4017–4925Google Scholar
  37. 37.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915Google Scholar
  38. 38.
    Nolasco MM, Ribeiro-Claro PJA (2005) Chem Phys Chem 6:496–502Google Scholar
  39. 39.
    Buemi G (2002) Chem Phys 282:181–195Google Scholar
  40. 40.
    Posokhov Y, Gorski A, Spanget-Larsen J, Duus F, Hansen PE, Waluk (2004) J Chem Phys Chem 5:495–502Google Scholar
  41. 41.
    Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560Google Scholar
  42. 42.
    Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890–10898Google Scholar
  43. 43.
    Schalley CA, Springer A (2009) Mass spectrometry and gas-phase chemistry of non-covalent complexes. Wiley, Hoboken, NJ, p 17Google Scholar
  44. 44.
  45. 45.
    Zhang G, Musgrave CB (2007) J Phys Chem A 111:1554–1561Google Scholar
  46. 46.
    Mammino L (2009) Chem Phys Lett 473:354–357Google Scholar
  47. 47.
    Chem3D Ultra Version 8.0.3., ChemOffice, Cambridge Software, 2003Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VendaThohoyandouSouth Africa

Personalised recommendations