Enhancement Factors for Positron Annihilation on Valence and Core Orbitals of Noble-Gas Atoms

Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

Annihilation momentum densities and vertex enhancement factors for positron annihilation on valence and core electrons of noble-gas atoms are calculated using many-body theory for s, p and d-wave positrons of momenta up to the positronium-formation threshold. The enhancement factors parametrize the effects of short-range electron-positron correlations which increase the annihilation probability beyond the independent-particle approximation. For all positron partial waves and electron subshells, the enhancement factors are found to be relatively insensitive to the positron momentum. The enhancement factors for the core electron orbitals are also almost independent of the positron angular momentum. The largest enhancement factor (\({\sim }10\)) is found for the 5p orbital in Xe, while the values for the core orbitals are typically \({\sim }1.5\).

Keywords

Positron annihilation Annihilation momentum density Many-body theory Enhancement factors Noble-gas atoms 

Notes

Acknowledgements

DGG is supported by a United Kingdom Engineering and Physical Sciences Research Council Fellowship, grant number EP/N007948/1.

References

  1. 1.
    Asoka-Kumar P, Alatalo M, Ghosh V, Kruseman A, Nielsen B, Lynn K (1996) Phys Rev Lett 77:2097.  https://doi.org/10.1103/PhysRevLett.77.2097
  2. 2.
    Lynn KG, MacDonald JR, Boie RA, Feldman LC, Gabbe JD, Robbins MF, Bonderup E, Golovchenko J (1977) Phys Rev Lett 38:241.  https://doi.org/10.1103/PhysRevLett.38.241
  3. 3.
    Iwata K, Gribakin GF, Greaves RG, Surko CM (1997) Phys Rev Lett 79:39.  https://doi.org/10.1103/PhysRevLett.79.39
  4. 4.
    Lynn K, Dickman J, Brown W, Robbins M, Bonderup E (1979) Phys Rev B 20:3566.  https://doi.org/10.1103/PhysRevB.20.3566
  5. 5.
    Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M, Saarinen K, Hautojärvi P, Nieminen R (1996) Phys Rev B 54:2397.  https://doi.org/10.1103/PhysRevB.54.2397
  6. 6.
    Tuomisto F, Makkonen I (2013) Rev Mod Phys 85:1583.  https://doi.org/10.1103/RevModPhys.85.1583
  7. 7.
    Weiss A, Mayer R, Jibaly M, Lei C, Mehl D, Lynn KG (1988) Phys Rev Lett 61:2245.  https://doi.org/10.1103/PhysRevLett.61.2245
  8. 8.
    Ohdaira T, Suzuki R, Mikado T, Ohgaki H, Chiwaki M, Yamazaki T (1997) Appl Surf Sci 116:177.  https://doi.org/10.1016/S0169-4332(96)01049-5
  9. 9.
    Weiss AH, Fazleev NG, Nadesalingam MP, Mukherjee S, Xie S, Zhu J, Davis BR (2007) Radiat Phys Chem 76:285.  https://doi.org/10.1016/j.radphyschem.2006.03.053
  10. 10.
    Mayer J, Hugenschmidt C, Schreckenbach K (2010) Surf Sci 604:1772.  https://doi.org/10.1016/j.susc.2010.07.003
  11. 11.
    Hugenschmidt C (2016) Surf Sci Rep 71:547.  https://doi.org/10.1016/j.surfrep.2016.09.002
  12. 12.
    Hugenschmidt C, Lwe B, Mayer J, Piochacz C, Pikart P, Repper R, Stadlbauer M, Schreckenbach K (2008) Nucl Instrum Methods A 593:616.  https://doi.org/10.1016/j.nima.2008.05.038
  13. 13.
    Mayer J, Hugenschmidt C, Schreckenbach K (2010) Phys Rev Lett 105:207401.  https://doi.org/10.1103/PhysRevLett.105.207401
  14. 14.
    Stoll H, Koch KMM, Major J (1991) Nucl Instrum Methods B 582:56Google Scholar
  15. 15.
    Coleman P (ed) (2000) Positron beams and their applications. World ScientificGoogle Scholar
  16. 16.
    Sano Y, Kino Y, Oka T, Sekine T (2015) J Phys Conf Ser 618:012010. http://stacks.iop.org/1742-6596/618/i=1/a=012010
  17. 17.
    Jensen KO, Weiss A (1990) Phys Rev B 41:3928.  https://doi.org/10.1103/PhysRevB.41.3928
  18. 18.
    Iwata K, Greaves RG, Murphy TJ, Tinkle MD, Surko CM (1995) Phys Rev A 51:473.  https://doi.org/10.1103/PhysRevA.51.473
  19. 19.
    Green DG, Ludlow JA, Gribakin GF (2014) Phys Rev A 90:032712.  https://doi.org/10.1103/PhysRevA.90.032712
  20. 20.
    Dunlop LJM, Gribakin GF (2006) J Phys B 39:1647.  https://doi.org/10.1088/0953-4075/39/7/008
  21. 21.
    Green DG, Gribakin GF (2013) Phys Rev A 88:032708.  https://doi.org/10.1103/PhysRevA.88.032708
  22. 22.
    Green DG, Saha S, Wang F, Gribakin GF, Surko CM (2010) Mater Sci Forum 666:21.  https://doi.org/10.4028/www.scientific.net/MSF.666.21
  23. 23.
    Green DG, Saha S, Wang F, Gribakin GF, Surko CM (2012) New J Phys 14:035021. http://stacks.iop.org/1367-2630/14/i=3/a=035021
  24. 24.
    Green DG, Gribakin GF (2015) Phys Rev Lett 114:093201.  https://doi.org/10.1103/PhysRevLett.114.093201
  25. 25.
    Bonderup E, Andersen JU, Lowy DN (1979) Phys Rev B 20:883.  https://doi.org/10.1103/PhysRevB.20.883
  26. 26.
    Flambaum VV (2009) Phys Rev A 79:042505.  https://doi.org/10.1103/PhysRevA.79.042505
  27. 27.
    Kozlov MG, Flambaum VV (2013) Phys Rev A 87:042511.  https://doi.org/10.1103/PhysRevA.87.042511
  28. 28.
    Kahana S (1963) Phys Rev 129:1622.  https://doi.org/10.1103/PhysRev.129.1622
  29. 29.
    Carbotte JP (1967) Phys Rev 155:197.  https://doi.org/10.1103/PhysRev.155.197
  30. 30.
    Boroński E, Nieminen R (1986) Phys Rev B 34:3820.  https://doi.org/10.1103/PhysRevB.34.3820
  31. 31.
    Puska MJ, Nieminen RM (1994) Rev Mod Phys 66:841.  https://doi.org/10.1103/RevModPhys.66.841
  32. 32.
    Arponen J, Pajanne E (1979) Ann Phys 121:343.  https://doi.org/10.1016/0003-4916(79)90101-5
  33. 33.
    Mitroy J, Barbiellini B (2002) Phys Rev B 65:235103.  https://doi.org/10.1103/PhysRevB.65.235103
  34. 34.
    Makkonen I, Ervasti MM, Siro T, Harju A (2014) Phys Rev B 89:041105.  https://doi.org/10.1103/PhysRevB.89.041105
  35. 35.
    Daniuk S, Kontrym-Sznajd G, Rubaszek A, Stachowiak H, Mayers J, Walters PA, West RN (1987) J Phys F: Metal Phys 17:1365.  https://doi.org/10.1088/0305-4608/17/6/011
  36. 36.
    Jarlborg T, Singh AK (1987) Phys Rev B 36:4660.  https://doi.org/10.1103/PhysRevB.36.4660
  37. 37.
    Rubaszek A , Stachowiak H (1984) Physica Status Solidi (B) 124:159.  https://doi.org/10.1002/pssb.2221240117CrossRefGoogle Scholar
  38. 38.
    Zubiaga A, Ervasti MM, Makkonen I, Harju A, Tuomisto F, Puska MJ (2016) J Phys B: At Mol Opt Phys 49:064005Google Scholar
  39. 39.
    Swann AR, Green DG, Gribakin GF arXiv: 1709.00394
  40. 40.
    Berestetskii VB, Lifshitz EM, Pitaevskii LP (1982) Quantum electrodynamics, 2nd edn. Pergamon, OxfordCrossRefGoogle Scholar
  41. 41.
    Kaijser P, Smith Jr VH (1977) Adv Quantum Chem 10:37.  https://doi.org/10.1016/S0065-3276(08)60578-X
  42. 42.
    Fraser PA (1968) Adv At Mol Phys 4:63CrossRefGoogle Scholar
  43. 43.
    Pomeranchuk I, Eksp Zh (1949) Teor Fiz 19:183Google Scholar
  44. 44.
    Dzuba VA, Flambaum VV, King WA, Miller BN, Sushkov OP (1993) Phys Scripta T46:248.  https://doi.org/10.1088/0031-8949/1993/T46/039
  45. 45.
    Dzuba VA, Flambaum VV, Gribakin GF, King WA (1996) J Phys B 29:3151.  https://doi.org/10.1088/0953-4075/29/14/024
  46. 46.
    Surko CM, Gribakin GF, Buckman SJ (2005) J Phys B 38:R57.  https://doi.org/10.1088/0953-4075/38/6/R01
  47. 47.
    Landau LD, Lifshitz EM (1977). Quantum mechanics (Non-relativistic theory). In: Course of theoretical physics, 3rd edn, vol 3. Pergamon, OxfordGoogle Scholar
  48. 48.
    Gribakin GF, Ludlow J (2004) Phys Rev A 70:032720.  https://doi.org/10.1103/PhysRevA.70.032720
  49. 49.
    Green DG (2011) PhD thesis, Queen’s University BelfastGoogle Scholar
  50. 50.
    Green DG, Gribakin GF (2015) arXiv:1502.08045
  51. 51.
    Abrikosov AA, Gorkov LP, Dzyalonshinkski IE (1975) Methods of quantum field theory in statistical physics. Dover, New YorkGoogle Scholar
  52. 52.
    Fetter AL, Walecka JD (2003) Quantum theory of many-particle systems. Dover, New YorkGoogle Scholar
  53. 53.
    Dickhoff WH, Neck DV (2008) Many body theory exposed!—Propagator description of quantum mechanics in many-body systems, 2nd edn. World Scientific, SingaporeGoogle Scholar
  54. 54.
    Bell JS, Squires EJ (1959) Phys Rev Lett 3:96.  https://doi.org/10.1103/PhysRevLett.3.96
  55. 55.
    Amusia MY, Cherepkov NA (1975) Case studies in atomic physics 5:47Google Scholar
  56. 56.
    Goldanski VI, Sayasov YS (1968) Phys Lett 13:300CrossRefGoogle Scholar
  57. 57.
    Arponen J, Pajanne E (1979) J Phys F 9:2359.  https://doi.org/10.1088/0305-4608/9/12/009
  58. 58.
    Barbiellini B, Puska MJ, Torsti T, Nieminen RM (1995) Phys Rev B 51:7341.  https://doi.org/10.1103/PhysRevB.51.7341
  59. 59.
    Stachowiak H, Lach J (1993) Phys Rev B 48:9828.  https://doi.org/10.1103/PhysRevB.48.9828
  60. 60.
    Daniuk S, Kontrym-Sznajd G, Rubaszek A, Stachowiak H, Mayers J, Walters PA, West RN (1987) J Phys F 17:1365.  https://doi.org/10.1088/0305-4608/17/6/011
  61. 61.
    Jensen KO (1989) J Phys Condens Matter 1:10595.  https://doi.org/10.1088/0953-8984/1/51/027
  62. 62.
    Alatalo M, Kauppinen H, Saarinen K, Puska MJ, Mäkinen J, Hautojärvi P, Nieminen RM (1995) Phys Rev B 51:4176.  https://doi.org/10.1103/PhysRevB.51.4176
  63. 63.
    Barbiellini B, Puska MJ, Alatalo M, Hakala M, Harju A, Korhonen T, Siljamäki S, Torsti T, Nieminen RM (1997) Appl Surf Sci 116:283.  https://doi.org/10.1016/S0169-4332(96)01070-7
  64. 64.
    Barbiellini B, Hakala M, Puska MJ, Nieminen RM, Manuel AA (1997) Phys Rev B 56:7136.  https://doi.org/10.1103/PhysRevB.56.7136
  65. 65.
    Makkonen I, Hakala M, Puska MJ (2006) Phys Rev B 73:035103.  https://doi.org/10.1103/PhysRevB.73.035103
  66. 66.
    Kuriplach J, Morales AL, Dauwe C, Segers D, Šob M (1998) Phys Rev B 58:10475.  https://doi.org/10.1103/PhysRevB.58.10475
  67. 67.
    Ludlow J (2003) PhD thesis, Queen’s University BelfastGoogle Scholar
  68. 68.
    Gribakin GF, Ludlow J (2002) Phys Rev Lett 88:163202.  https://doi.org/10.1103/PhysRevLett.88.163202
  69. 69.
    Iwata K, Greaves RG, Surko CM (1997) Phys Rev A 55:3586.  https://doi.org/10.1103/PhysRevA.55.3586
  70. 70.
    Mitroy J, Ivanov IA (2001) Phys Rev A 65:012509.  https://doi.org/10.1103/PhysRevA.65.012509
  71. 71.
    Gribakin GF, Young JA, Surko CM (2010) Rev Mod Phys 82:2557.  https://doi.org/10.1103/RevModPhys.82.2557
  72. 72.
    Tachikawa M (2014) J Phys Conf Ser 488:012053.  https://doi.org/10.1088/1742-6596/488/1/012053
  73. 73.
    Dzuba VA, Kozlov A, Flambaum VV (2014) Phys Rev A 89:042507.  https://doi.org/10.1103/PhysRevA.89.042507

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Theoretical Atomic, Molecular and Optical PhysicsQueen’s University BelfastBelfastUK

Personalised recommendations