Skip to main content

The World’s Largest Late to Post-Archaean Asteroid Impact Structures

  • Chapter
  • First Online:
  • 518 Accesses

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 14))

Abstract

As distinct from small to medium-size impact events, large asteroid impacts producing explosions more powerful than 107 TNT-equivalent, represented by craters and rebound domes larger than about 100 km in diameter have major consequences including the triggering of major seismic events, tsunami events and extinction episodes. Such events are manifested by the Archaean ~3.25–3.24 Ga impact cluster and associated transformation from greenstone-granite terrains to semi-continental assemblages (Glikson AY, Vickers J, Earth Planet Sci Lett 241:11–20, 2006). These impact events are considered in Chap. 6. The oldest identified mega-impact is the ~3 Ga Maniitsoq structure in southwest Greenland, while younger mega-impact structures >100 km in diameter include the Vredefort and Sudbury structures. Phanerozoic mega-impacts include the Woodleigh impact structure, Warburton twin structures, Chicxulub and Popigai structures. The global tectonic consequences of some of these mega-impacts are yet to be elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison WD, Brumpton GR, Vallini DA, McNaughton NJ, Davis DW, Kissin SA, Fralick PW, Hammond AL (2005) Discovery of distal ejecta from the 1850 Ma Sudbury impact event. Geology 33:193–196

    Article  Google Scholar 

  • Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf mega fossils. Proc Natl Acad Sci USA 99:7836–7840

    Google Scholar 

  • Brink MC, Wanders FB, Bisschoff AA (1997) Vredefort: a model for the anatomy of an astrobleme. Tectonophysics 270:83–114

    Article  Google Scholar 

  • Buchanan PC, Reimold WU (2002) Impact-related features in lithic clasts form the Vrederfort Granophyre, South Africa, Meteoritics 36, 9, Supplement pg. 31

    Google Scholar 

  • Butler HR (1994) Lineament analysis of the Sudbury multiring impact structure. Geol Soc Am Sp Pap 293:319–329

    Google Scholar 

  • Cannon WF, Schulz KJ, Wright J, Horton D, Kring A (2010) The Sudbury impact layer in the Paleoproterozoic iron ranges of northern Michigan, USA. Geol Soc Am Bull 122:50–75

    Article  Google Scholar 

  • Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    Article  Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Special Papers 356. Geological Society of America, Boulder, pp 55–68

    Google Scholar 

  • Dence MR (1972) Meteorite impact craters and the structure of the Sudbury basin. Geol Assoc Canada Sp Pap 10:7–18

    Google Scholar 

  • Dietz RS (1961) Vredefort ring structure: meteorite impact scar? J Geol 69:496–505

    Article  Google Scholar 

  • Dietz RS (1964) Sudbury structure as an astrobleme. J Geol 72:412–434

    Google Scholar 

  • Dietz RS (1968) Shatter cones in cryptoexplosion structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, pp 267–285

    Google Scholar 

  • French BM (1968) Sudbury structure Ontario: some petrographic evidence for an origin by meteorite impact. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Books, Baltimore, pp 383–412

    Google Scholar 

  • French BM, Orth CJ, Quintana LR (1988) Iridium in the Vredefort Bronzite Granophyre–impact melting and limits on a possible extraterrestrial component. Lunar and Planetary Science Conference 19th Houston TX 14–18, pp 733–744

    Google Scholar 

  • Garde AA, Glikson AY (2011) Recognition of re-deformed planar deformation features (PDF) in large impact structures. 74th Ann Meteor Soc Meet, 5246 pdf

    Google Scholar 

  • Garde AA, McDonald I, Dyck B, Keulen N (2012) Searching for giant ancient impact structures on Earth: the Meso-Archaean Maniitsoq structure, West Greenland. Earth Planet Sci Lett 2012:337–338

    Google Scholar 

  • Giblin PE (1984) History of exploration and development of geological studies and development of geological concepts. In: Pye E, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Ontario Geological Survey, Toronto, pp 3–24

    Google Scholar 

  • Gibson RL, Reimold WU (2001) The Vredefort impact structure South Africa: the scientific evidence and a two-day excursion guide. Council Geosci Mem 92:111 p

    Google Scholar 

  • Glikson AY, Vickers J (2006) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth Planet Sci Lett 241:11–20

    Google Scholar 

  • Glikson AY, Eggins S, Golding S, Haines P, Iasky RP, Mernagh TP, Mory AJ, Pirajno F, Uysal IT (2005) Microchemistry and microstructures of hydrothermally altered shock-metamorphosed basement gneiss, Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Aust J Earth Sci 52:555–573

    Article  Google Scholar 

  • Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mount Ashmore structural dome west 661 Bonaparte basin Timor Sea. Aust J Earth Sci 57:411–430

    Article  Google Scholar 

  • Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76

    Article  Google Scholar 

  • Glikson AY, Meixner AJ, Radke B, Uysal IT, Saygin E, Vickers J, Mernagh TP (2015) Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia. Tectonophysics 643:55–72

    Article  Google Scholar 

  • Grieve RAF (2006) Impact structures in Canada. Geological Association of Canada, St. John’s, p 210

    Google Scholar 

  • Grieve RAF, Stöffler D, Deutsch A (1991) The sudbury structure: controversial or misunderstood? J Geophys Res 96:22753–22764

    Article  Google Scholar 

  • Grieve RAF, Reimold WU, Morgan J, Riller U, Pilkington M (2008) Observations and interpretations at Vredefort, Sudbury and Chicxulub: towards an empirical model of terrestrial impact basin formation. Meteorit Planet Sci 43:855–882

    Google Scholar 

  • Guy-Bray J (1966) Shatter cones at Sudbury. J Geol 74:243–245

    Article  Google Scholar 

  • Hargraves RB (1961) Shatter cones in the rocks of the Vredefort ring. Geol Soc S Afr Trans 64:147–154

    Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Hildebrand AR, Pilkington M, Connors M, Ortiz-Aleman C, Chavez RE (1995) Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 376:415–417

    Article  Google Scholar 

  • Hildebrand AR, Pilkington M, Ortiz-Aleman C, Chavez RE, Urrutia-Fucugauchi J, Connors M, Graniel-Castro E, Camarago ZA, Halpenny JF, Niehaus D (1998) Mapping Chicxulub crater structure with gravity and seismic reflection data. In: Meteorites flux with time and impact effects, Special publication, vol 140. Geological Society, London, pp 153–173

    Google Scholar 

  • Iasky RP, Mory AJ, Shevchenko SI (1998) A structural interpretation of the Gascoyne platform Southern Carnarvon basin West Australia In: Purcell PG, Purcell RR (eds) The sedimentary basins of West Australia. Proc Petrol Explor Soc Aust Symp, Perth, pp 589–598

    Google Scholar 

  • Iasky RP, Mory AJ, Blundell KA (2001) The geophysical signature of the Woodleigh impact structure Southern Carnarvon basin, Western Australia. Geol Surv West Aust Rep 79, 41 p

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a fi rst report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387

    Article  Google Scholar 

  • Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757

    Article  Google Scholar 

  • Killick AM, Thaites AM, Germs GJB, Schoch AE (1988) Pseudotachylite associated with a bedding-parallel fault zone between the Witwatersrand and Ventersdorp supergroup South Africa. Geolo Rund 77:329–344

    Article  Google Scholar 

  • Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb zircon and Baddeleyite ages for the Sudbury area. In: The geology and ore deposits of the Sudbury structure, Special volume 1. Ontario Geological Survey, Sudbury, pp 431–448

    Google Scholar 

  • Lana C, Reimold WU, Gibson R, Koeberl C, Siegesmund S (2004) Nature of the Archean midcrust in the core of the Vredefort Dome, Central Kaapvaal Craton, South Africa. Geochim Cosmochim Acta 68:623–642

    Article  Google Scholar 

  • Leroux H, Reimold WU, Doukhan JC (1994) A TEM investigation of shock metamorphism in quartz from the Vredefort Dome South Africa. Tectonophysics 230:223–239

    Article  Google Scholar 

  • Lightfoot P (2016) Nickel sulfide ores and impact melts – Origin of the Sudbury Igneous Complex. Elsevier, Amsterdam, 662pp

    Google Scholar 

  • Martini JEJ (1978) Coesite and stishovite in the Vredefort Dome South Africa. Nature 272:715–717

    Article  Google Scholar 

  • Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Meteorit Planet Sci 33:349–359

    Article  Google Scholar 

  • McCarthy TS, Charlesworth EG, Stanistreet IG (1986) Post-Transvaal structural features of the northern portion of the Witwatersrand basin. Trans Geol Soc S Afr 89:311–324

    Google Scholar 

  • McCarthy TS, Stanistreet IG, Robb LJ (1990) Geological studies related to the origin of the Witwatersrand basin and its mineralization–an introduction and a strategy for research and exploration. S Afr J Geol 93:1–4

    Google Scholar 

  • Meixner AJ, Boucher RK, Yeates AN, Gunn PJ, Richardson LM, Frears RA (1999) Interpretation of geophysical and geological data sets, Cooper Basin region. South Australia: Australian Geological Survey Organization, Record, 1999/22

    Google Scholar 

  • Meixner TJ, Gunn PJ, Boucher RK, Yeats AN, Murray L, Yeates TN, Richardson LM, Freares RA (2000) The nature of the basement to the Cooper Basin region. South Australia. Explor Geophys 31:024–032

    Google Scholar 

  • Morgan JV, Warner M, Chicxulub Working Group (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476

    Article  Google Scholar 

  • Morgan JV, Warner MR, Collins GS, Melosh HJ, Christeson GL (2000) Peak ring formation in large impact craters. Earth Planet Sci Lett 183:347–354

    Article  Google Scholar 

  • Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000a) Woodleigh Carnarvon basin, Western Australia: a new 120 km-diameter impact structure. Earth Planet Sci Lett 177:119–128

    Article  Google Scholar 

  • Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000b) Response to ‘Critical comment on AJ Mory et al. (2000) Woodleigh Carnarvon basin Western Australia: a new 120 km diameter impact structure. Earth Planet Sci Lett 184:359–365

    Article  Google Scholar 

  • Muundjua M (2007) Magnetic imaging of the Vredefort impact crater, South Africa. Earth Planet Sci Lett 261:456–468

    Article  Google Scholar 

  • Naldrett AJ, Bray JG, Gasparrini EL, Podolsky T, Rucklidge JC (1970) Cryptic variation and the petrology of the Sudbury nickel irruptive. Econ Geol 65:122–155

    Article  Google Scholar 

  • Nicolaysen LO, Ferguson J (1990) Cryptoexplosion structures shock deformation and siderophile concentration related to explosive venting of fluids associated with alkaline ultramafic magmas. Tectonophysics 171:303–335

    Article  Google Scholar 

  • Pilkington M, Hildebrand AR (2000) Three-dimensional magnetic imaging of the Chicxulub crater. J Geophys Res 105:23479–23491

    Article  Google Scholar 

  • Pilkington M, Hildebrand AR, Ortiz-Aleman C (1994) Gravity and magnetic field modeling and structure of the Chicxulub crater, Mexico. J Geophys Res 99:13147–13162

    Article  Google Scholar 

  • Pope KO, Ocampo AC, Duller CE (1993) Surficial geology of the Chicxulub impact crater Yucatán Mexico. Earth Moon Planet 63:93–104

    Article  Google Scholar 

  • Pye EG, Naldrett AJ, Giblin PE (eds) (1984) The geology and ore deposits of the Sudbury structure, Special volume 1. Ontario Geological Survey, Toronto, 604 p

    Google Scholar 

  • Radke B (2009) Hydrocarbon and geothermal prospectivity of sedimentary basins in Central Australia Warburton, Cooper, Pedirka, Galilee, Simpson and Eromanga Basins. Geoscience Australia Record 2009/25

    Google Scholar 

  • Reimold WU, Gibson RL (2005) Meteorite impact! The danger from space and South Africa’s mega-impact – the Vredefort structure. Chris van Resnburg Publications Ltd, Johannesburg, 319pp

    Google Scholar 

  • Reimold WU, Gibson RL (2006) The melt rocks of the Vredefort impact structure–Vredefort granophyre and pseudotachylitic breccias: implications for impact cratering and the evolution of the Witwatersrand Basin. Chemie der Erde Geochem 66:1–35

    Article  Google Scholar 

  • Riller U (2005) Structural characteristics of the Sudbury impact structure Canada: impact induced and orogenic deformation–a review. Meteorit Planet Sci 40:1723–1740

    Article  Google Scholar 

  • Rousell DH (1984) Structural geology of the Sudbury basin. In: Pye E, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure, Special volume 1. Ontario Geological, Survey, Sudbury, pp 83–96

    Google Scholar 

  • Saygin E, Kennett BLN (2010) Ancient seismic tomography of the Australian continent. Tectonophysics 481:116–125

    Google Scholar 

  • Sharpton VL, Burke K, Camargo Z, Hall SA, Lee DS, Marin LE, Suárez R, Quezada M, Spudis PD, Urrutia-Fucugauchi J (1993) Chicxulub multi-ring impact basin: size and other characteristics derived from gravity analysis. Science 261:1564–1567

    Article  Google Scholar 

  • Sharpton VL, Martin LE, Carney JL, Lees S, Ryder G, Schuraytz BC, Sikora P, Spudis PD (1996) A model of the Chicxulub impact basin based on the evaluation of geophysical data well logs and drill core samples. Geol Soc of Am Sp Pap 307:55–74

    Google Scholar 

  • Spray JG (1997) Superfaults. Geology 25:627–630

    Article  Google Scholar 

  • Spray JG, Butler HR, Thompson LM (2004) Tectonic influences on the morphometry of the Sudbury impact structure: implications for terrestrial cratering and modeling. Meteorit Planet Sci 39:287–301

    Article  Google Scholar 

  • Stöffler D, Artemieva A, Ivanov B, Hecht L, Kenkmann T, Schmitt RT, Tagle RA, Wittmann A (2004) Origin and emplacement of the impact formations at Chicxulub Mexico as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteorit Planet Sci 39:1035–1067

    Article  Google Scholar 

  • Swisher CC, Grahales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedillo-Pardo E, Florentin JM, Maurasse R, Curtis GH, Smit J, McWilliams MO (1992) Coeval 39Ar/40Ar ages of 66 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958

    Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) The Vredefort Structure: original size and significance for geologic evolution of the Witwatersrand Basin. Meteoritics 32:71–77

    Article  Google Scholar 

  • Therriault AM, Anthony D, Flower R, Grieve RAF (2002) The Sudbury igneous complex: a differentiated impact melt sheet. Econ Geol 97:1521–1540

    Article  Google Scholar 

  • Thompson LM, Spray JG, Kelley SP (1998) Laser probe argon-40/argon-39 dating of pseudotachylite from the Sudbury structure: evidence for post-impact thermal overprinting in the North range. Meteorit Planet Sci 33:1259–1269

    Google Scholar 

  • Tuchscherer MG, Spray JG (2002) Geology mineralization and emplacement of the Foy offset dike, Sudbury. Econ Geol 97:1377–1398

    Google Scholar 

  • Uysal T, Golding SD, Glikson AY, Mory AJ, Glikson M (2001) K–Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, southern Carnarvon Basin, Western Australia. Earth Planet Sci Lett 192:281–289

    Article  Google Scholar 

  • Uysal T, Golding SD, Glikson AY, Mory AJ, Glikson M, Iasky RP, Pirajno (2002) Reply to “Comment on: ‘K–Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter”. Earth Planet Sci Lett 201:253–260

    Article  Google Scholar 

  • Vermeesch PM, Morgan JV (2004) Chicxulub central crater structure: Initial results from physical property measurements and combined velocity and gravity modeling. Meteorit Planet Sci 39:1019–1034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glikson, A.Y., Pirajno, F. (2018). The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In: Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia. Modern Approaches in Solid Earth Sciences, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-74545-9_3

Download citation

Publish with us

Policies and ethics