Skip to main content

Modeling Swarm Systems and Formal Design Methods

  • Chapter
  • First Online:
Book cover Swarm Robotics: A Formal Approach

Abstract

We learn about why and how we model systems of swarm robotics and how sophisticated design methods can look like.Modeling is motivated and introduced as a dimension reduction technique for swarm robotics. Then we start from a discussion of local sampling, which is the challenge in swarm robotics of dealing with local information. The local samples are not representative for the whole swarm and hence we require a methodology to work with unreliable local information. Several modeling techniques are introduced that are frequently applied in swarm robotics, such as rate equations and spatial models based on ordinary and partial differential equations. We also discuss network models and the interesting option of using robot swarms as models for biology.

In the second part, we turn to formal design approaches starting from multi-scale modeling. Software engineering approaches and verification techniques are discussed and we look into the so-called concept of global-to-local programming.

That relatively simple algorithm is how my model works, and it manifests itself as complex hunting behavior when scaled up to a swarm of stigmergic agents.

—Daniel Suarez, Kill Decision

Leon and I could try to model a swarm of them electronically. We could give them various characteristics and see how long it takes for them to start acting like a brain.

—Frank Schätzing, The Swarm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Sect. 5.2.2 we know that the Binomial proportion 95%-confidence interval is defined by \(\hat {P}\pm 1.96 \sqrt {\frac {1}{n}\hat {P}(1-\hat {P})}\).

  2. 2.

    From Sect. 5.2.2 we know that the true probability is P = 2b/().

References

  1. Akhtar, N., Ozkasap, O., & Ergen, S. C. (2013). Vanet topology characteristics under realistic mobility and channel models. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1774–1779). New York: IEEE.

    Chapter  Google Scholar 

  2. Bjerknes, J. D., Winfield, A., & Melhuish, C. (2007). An analysis of emergent taxis in a wireless connected swarm of mobile robots. In Y. Shi & M. Dorigo (Eds.), IEEE Swarm Intelligence Symposium, Los Alamitos, CA (pp. 45–52). New York: IEEE Press.

    Google Scholar 

  3. Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM, 56(8), 74–83. http://doi.acm.org/10.1145/2493883

    Article  Google Scholar 

  4. Brambilla, M. (2014). Formal Methods for the Design and Analysis of Robot Swarms. PhD thesis, Université Libre de Bruxelles.

    Google Scholar 

  5. Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406. https://doi.org/10.1126/science.1125142

    Article  Google Scholar 

  6. Ciocchetta, F., & Hillston, J. (2009). Bio-PEPA: A framework for the modelling and analysis of biological systems. Theoretical Computer Science, 410(33), 3065–3084.

    Article  MathSciNet  MATH  Google Scholar 

  7. Crespi, V., Galstyan, A., & Lerman, K. (2008). Top-down vs bottom-up methodologies in multi-agent system design. Autonomous Robots, 24(3), 303–313.

    Article  Google Scholar 

  8. De Nicola, R., Ferrari, G. L., & Pugliese, R. (1998). KLAIM: A kernel language for agents interaction and mobility. IEEE Transactions on Software Engineering, 24(5), 315–330.

    Article  Google Scholar 

  9. De Nicola, R., Katoen, J., Latella, D., Loreti, M., & Massink, M. (2007). Model checking mobile stochastic logic. Theoretical Computer Science, 382(1), 42–70.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm robotic systems. Towards Autonomous Robotic Systems (TAROS) (pp. 336–347). Berlin: Springer.

    Google Scholar 

  11. Eiben, Á. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Natural computing series. Berlin: Springer.

    Book  MATH  Google Scholar 

  12. Erdmann, U., Ebeling, W., Schimansky-Geier, L., & Schweitzer, F. (2000). Brownian particles far from equilibrium. The European Physical Journal B - Condensed Matter and Complex Systems, 15(1), 105–113.

    Article  MATH  Google Scholar 

  13. Erdős, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen, 6(290–297), 156.

    Google Scholar 

  14. Ferrante, E., Dúeñez Guzḿan, E., Turgut, A. E., & Wenseleers, T. (2013). Evolution of task partitioning in swarm robotics. In V. Trianni (Ed.), Proceedings of the Workshop on Collective Behaviors and Social Dynamics of the European Conference on Artificial Life (ECAL 2013). Cambridge, MA: MIT Press.

    Google Scholar 

  15. Ferrante, E., Turgut, A. E., Duéñez-Guzmàn, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of self-organized task specialization in robot swarms. PLoS Computational Biology, 11(8), e1004273. https://doi.org/10.1371/journal.pcbi.1004273.

    Article  Google Scholar 

  16. Fokker, A. D. (1914). Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik, 348(5), 810–820.

    Article  Google Scholar 

  17. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014). An experiment in automatic design of robot swarms: Automode-vanilla, evostick, and human experts. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Ninth International Conference on Swarm Intelligence (ANTS 2014). Lecture notes in computer science (Vol. 8667, pp. 25–37).

    Google Scholar 

  18. Galam, S. (2008). Sociophysics: A review of Galam models. International Journal of Modern Physics C, 19(3), 409–440.

    Article  MATH  Google Scholar 

  19. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F., Pinciroli, C., Brambilla, M., et al. (2012). Towards a formal verification methodology for collective robotic systems. In Formal methods and software engineering (pp. 54–70). Berlin: Springer.

    Chapter  Google Scholar 

  20. Gomes, J., Urbano, P., & Christensen, A. L. (2013). Evolution of swarm robotics systems with novelty search. Swarm Intelligence, 7(2–3), 115–144.

    Article  Google Scholar 

  21. Gross, T., & Sayama, H. (2009). Adaptive networks: Theory, models, and data. Berlin: Springer.

    Book  Google Scholar 

  22. Haken, H. (1977). Synergetics - An introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  23. Hamann, H. (2010). Space-time continuous models of swarm robotics systems: Supporting global-to-local programming. Berlin: Springer.

    Book  Google Scholar 

  24. Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2–4), 209–239. http://dx.doi.org/10.1007/s11721-008-0015-3

    Article  Google Scholar 

  25. Helbing, D., Schweitzer, F., Keltsch, J., & Molnár, P. (1997). Active walker model for the formation of human and animal trail systems. Physical Review E, 56(3), 2527–2539.

    Article  Google Scholar 

  26. Huepe, C., Zschaler, G., Do, A.-L., & Gross, T. (2011). Adaptive-network models of swarm dynamics. New Journal of Physics, 13, 073022. http://dx.doi.org/10.1088/1367-2630/13/7/073022

    Article  Google Scholar 

  27. König, L., Mostaghim, S., & Schmeck, H. (2009). Decentralized evolution of robotic behavior using finite state machines. International Journal of Intelligent Computing and Cybernetics, 2(4), 695–723.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of probabilistic real-time systems. In G. Gopalakrishnan & S. Qadeer (Eds.), Proceedings of 23rd International Conference on Computer Aided Verification (CAV’11). Lecture notes in computer science (Vol. 6806, pp. 585–591). Berlin: Springer.

    Google Scholar 

  29. Lehman, J., & Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for novelty. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (pp. 329–336). Cambridge, MA: MIT Press.

    Google Scholar 

  30. Lehman, J., & Stanley, K. O. (2011). Improving evolvability through novelty search and self-adaptation. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11) (pp. 2693–2700). New York: IEEE.

    Chapter  Google Scholar 

  31. Lerman, K. (2004). A model of adaptation in collaborative multi-agent systems. Adaptive Behavior, 12(3–4), 187–198.

    Article  Google Scholar 

  32. Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13, 127–141.

    Article  MATH  Google Scholar 

  33. Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), Swarm Robotics - SAB 2004 International Workshop. Lecture notes in computer science (Vol. 3342, pp. 143–152). Berlin: Springer.

    Google Scholar 

  34. Lind, J. (2000). Issues in agent-oriented software engineering. In M. Wooldridge (Ed.), Agent-oriented software engineering. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  35. Mallon, E. B., & Franks, N. R. (2000). Ants estimate area using Buffon’s needle. Proceedings of the Royal Society of London B, 267(1445), 765–770.

    Article  Google Scholar 

  36. Martinoli, A. (1999). Swarm Intelligence in Autonomous Collective Robotics: From Tools to the Analysis and Synthesis of Distributed Control Strategies. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  37. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. International Journal of Robotics Research, 23(4), 415–436.

    Article  Google Scholar 

  38. Matarić, M. J. (1993). Designing emergent behaviors: From local interactions to collective intelligence. Proceedings of the Second International Conference on From Animals to Animats 2: Simulation of Adaptive Behavior (pp. 432–441).

    Google Scholar 

  39. Matarić, M. J. (1995). Designing and understanding adaptive group behavior. Adaptive Behavior, 4, 51–80.

    Article  Google Scholar 

  40. Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1), 73–83.

    Article  Google Scholar 

  41. Milutinovic, D., & Lima, P. (2006). Modeling and optimal centralized control of a large-size robotic population. IEEE Transactions on Robotics, 22(6), 1280–1285.

    Article  Google Scholar 

  42. Milutinovic, D., & Lima, P. (2007). Cells and robots: Modeling and control of large-size agent populations. Berlin: Springer.

    MATH  Google Scholar 

  43. Nolfi, S., Bongard, J., Husbands, P., & Floreano, D. (2016). Evolutionary robotics. In Springer handbook of robotics (pp. 2035–2068). Berlin: Springer.

    Chapter  Google Scholar 

  44. Parunak, H. V. D., & Brueckner, S. A. (2004). Engineering swarming systems. In Methodologies and software engineering for agent systems (pp. 341–376). Berlin: Springer.

    Chapter  Google Scholar 

  45. Planck, M. (1917). Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 24, 324–341.

    Google Scholar 

  46. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2002). Numerical recipes in C++. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  47. Prorok, A., Correll, N., & Martinoli, A. (2011). Multi-level spatial models for swarm-robotic systems. The International Journal of Robotics Research, 30(5), 574–589.

    Article  Google Scholar 

  48. Ramaley, J. F. (1969). Buffon’s noodle problem. The American Mathematical Monthly, 76(8), 916–918. http://www.jstor.org/stable/2317945

    Article  MathSciNet  MATH  Google Scholar 

  49. Reina, A., Dorigo, M., & Trianni, V. (2014). Towards a cognitive design pattern for collective decision-making. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Swarm intelligence. Lecture notes in computer science (Vol. 8667, pp. 194–205). Berlin: Springer International Publishing. ISBN 978-3-319-09951-4. http://dx.doi.org/10.1007/978-3-319-09952-1_17

  50. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A design pattern for decentralised decision making. PLoS One, 10(10), 1–18. https://doi.org/10.1371/journal.pone.0140950

    Article  Google Scholar 

  51. Risken, H. (1984). The Fokker-Planck equation. Berlin: Springer.

    Book  MATH  Google Scholar 

  52. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24. ISSN 00318248, 1539767X. http://www.jstor.org/stable/184878

  53. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.

    Article  MATH  Google Scholar 

  54. Russell, S. J., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood, Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  55. Schweitzer, F. (2002). Brownian agent models for swarm and chemotactic interaction. In D. Polani, J. Kim, & T. Martinetz (Eds.), Fifth German Workshop on Artificial Life. Abstracting and Synthesizing the Principles of Living Systems (pp. 181–190). Akademische Verlagsgesellschaft Aka.

    Google Scholar 

  56. Schweitzer, F. (2003). Brownian agents and active particles. On the emergence of complex behavior in the natural and social sciences. Berlin: Springer.

    MATH  Google Scholar 

  57. Schweitzer, F., Lao, K., & Family, F. (1997). Active random walkers simulate trunk trail formation by ants. BioSystems, 41, 153–166.

    Article  Google Scholar 

  58. Schweitzer, F., & Schimansky-Geier, L. (1994). Clustering of active walkers in a two-component system. Physica A, 206, 359–379.

    Article  Google Scholar 

  59. Sood, V., & Redner, S. (2005). Voter model on heterogeneous graphs. Physical Review Letters, 94(17), 178701.

    Article  Google Scholar 

  60. Stepney, S., Polack, F., & Turner, H. (2006). Engineering emergence. In CEC 2006: 11th IEEE International Conference on Engineering of Complex Computer Systems, Stanford, CA, USA, Los Alamitos, CA, August 2006. New York: IEEE Press.

    Google Scholar 

  61. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276. http://www.nature.com/nature/journal/v410/n6825/abs/410268a0.html

    Article  MATH  Google Scholar 

  62. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  63. Trianni, V. (2008). Evolutionary swarm robotics - Evolving self-organising behaviours in groups of autonomous robots. Studies in computational intelligence (Vol. 108). Berlin: Springer.

    Google Scholar 

  64. Trianni, V., Groß, R., Labella, T. H., Şahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors in a swarm of robots. In W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, & J. T. Kim (Eds.), Advances in Artificial Life (ECAL 2003). Lecture notes in artificial intelligence (Vol. 2801, pp. 865–874). Berlin: Springer.

    Google Scholar 

  65. Trianni, V., Labella, T. H., & Dorigo, M. (2004). Evolution of direct communication for a swarm-bot performing hole avoidance. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Ant colony optimization and swarm intelligence (ANTS 2004). Lecture notes in computer science (Vol. 3172, pp. 130–141). Berlin: Springer.

    Google Scholar 

  66. Valentini, G. (2017). Achieving consensus in robot swarms: Design and analysis of strategies for the best-of-n problem. Berlin: Springer. ISBN 978-3-319-53608-8. https://doi.org/10.1007/978-3-319-53609-5

    Book  MATH  Google Scholar 

  67. Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed vs accuracy in binary discrimination problems. Journal of Autonomous Agents and Multi-Agent Systems, 30(3), 553–580. http://dx.doi.org/10.1007/s10458-015-9323-3

    Article  Google Scholar 

  68. Vigelius, M., Meyer, B., & Pascoe, G. (2014). Multiscale modelling and analysis of collective decision making in swarm robotics. PLoS One, 9(11), 1–19. https://doi.org/10.1371/journal.pone.0111542

    Article  Google Scholar 

  69. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  MATH  Google Scholar 

  70. Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral and Brain Sciences, 24, 1033–1050.

    Google Scholar 

  71. Webb, B. (2002). Robots in invertebrate neuroscience. Nature, 417, 359–363.

    Article  Google Scholar 

  72. Webb, B., & Scutt, T. (2000). A simple latency-dependent spiking-neuron model of cricket phonotaxis. Biological Cybernetics, 82, 247–269.

    Article  Google Scholar 

  73. Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758. http://dx.doi.org/10.1126/science.1245842

    Article  Google Scholar 

  74. Whiteson, S., Kohl, N., Miikkulainen, R., & Stone, P. (2003). Evolving keepaway soccer players through task decomposition. In Genetic and Evolutionary Computation-GECCO 2003 (pp. 20–212). Berlin: Springer.

    Google Scholar 

  75. Whiteson, S., & Stone, P. (2006). Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research, 7, 877–917.

    MathSciNet  MATH  Google Scholar 

  76. Winfield, A. F. T., Harper, C. J., & Nembrini, J. (2004). Towards dependable swarms and a new discipline of swarm engineering. In International Workshop on Swarm Robotics (pp. 126–142). Berlin: Springer.

    Google Scholar 

  77. Winfield, A. F. T., Sa, J., Fernández-Gago, M.-C., Dixon, C., & Fisher, M. (2005). On formal specification of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems, 2(4), 363–370. https://doi.org/10.5772/5769

    Article  Google Scholar 

  78. Yamins, D. (2005). Towards a theory of “local to global” in distributed multi-agent systems. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05) (pp. 183–190).

    Google Scholar 

  79. Yamins, D. (2007). A Theory of Local-to-Global Algorithms for One-Dimensional Spatial Multi-Agent Systems. PhD thesis, Harvard University, November 2007.

    Google Scholar 

  80. Yamins, D., & Nagpal, R. (2008). Automated global-to-local programming in 1-D spatial multi-agent systems. In L. Padgham, D. C. Parkes, J. P. Müller, & S. Parsons (Eds.), Proceedings of 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 2008.

    Google Scholar 

  81. Yasuda, T., & Ohkura, K. (2008). A reinforcement learning technique with an adaptive action generator for a multi-robot system. In The Tenth International Conference on Simulation of Adaptive Behavior (SAB’08). Lecture notes in artificial intelligence, July 2008 (Vol. 5040, pp. 250–259). Berlin: Springer.

    Google Scholar 

  82. Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5464–5469. https://doi.org/10.1073/pnas.0811195106. http://www.pnas.org/content/106/14/5464.abstract

  83. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2004). Impact of radio irregularity on wireless sensor networks. In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services (pp. 125–138). New York: ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamann, H. (2018). Modeling Swarm Systems and Formal Design Methods. In: Swarm Robotics: A Formal Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-74528-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74528-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74526-8

  • Online ISBN: 978-3-319-74528-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics