Skip to main content

What Are Plant-Released Biogenic Volatiles and How They Participate in Landscape- to Global-Level Processes?

  • Chapter
  • First Online:
Ecosystem Services from Forest Landscapes

Abstract

Plants face a multitude of abiotic and biotic stresses with varying severity throughout their life, and these stresses can result in varying changes to the ecosystem services provided by the plants. Climate change involves modification of several environmental drivers, and it is predicted to increase the frequency and severity of various abiotic and biotic stresses, including rising temperatures, increasingly uneven distribution of precipitation, and more frequent outbreaks of herbivore and pathogen attacks. As any stress reduces plant CO2 fixation, enhanced stress frequency and severity are expected to lead to faster rise of atmospheric CO2 concentration, thereby further exacerbating climate change. On the other hand, plants can importantly modify their own life environment by release of volatile organic compounds (BVOC). The plant-generated volatiles modify the oxidative status of the ambient atmosphere by enhancing the rate of ozone formation in atmospheres polluted by mono-nitrogen oxides (NOx). From this perspective, plant emissions can be considered as ecosystem “disservice.” Plant-emitted volatiles also importantly participate in aerosol and cloud formation in both polluted and non-polluted atmospheres, thereby reducing solar radiation penetration and ambient temperature. Plant-facilitated cooling can partly counteract global warming, and thus, plant emissions provide an important global regulatory ecosystem service. Apart from constitutive volatile emissions that are present in only some species and are expected to decrease under stress, especially under severe stress, all plants respond to stresses by inducing BVOC emissions that serve as signal molecules eliciting stress response pathways and leading to plant acclimation. These induced BVOC emissions, the plant “talk,” also contribute to atmospheric processes and can potentially reduce the stress severity, and, accordingly, stress-driven reductions in CO2 uptake. Thus, the stress responses and acclimation of vegetation to future environmental stresses can importantly modify the speed and magnitude of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achotegui-Castells A, Danti R, Llusià J, Della Rocca G, Barberini S, Peñuelas J (2015) Strong induction of minor terpenes in Italian cypress, Cupressus sempervirens, in response to infection by the fungus Seiridium cardinale. J Chem Ecol 41:224–243

    Article  PubMed  CAS  Google Scholar 

  • Altieri M, Nicholls C (2004) Biodiversity and pest management in agroecosystems, 2nd edn. Food Products Press, New York

    Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases – structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620

    Article  CAS  Google Scholar 

  • Arneth A, Unger N, Kulmala M, Andreae MO (2009) Clean the air, heat the planet? Science 326:672–673

    Article  PubMed  CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 451–487

    Chapter  Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219

    Article  CAS  Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    Article  CAS  Google Scholar 

  • Blanch J-S, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225

    PubMed  CAS  Google Scholar 

  • Blanch J-S, Peñuelas J, Sardans J, Llusià J (2009) Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol Plant 31:207–218

    Article  CAS  Google Scholar 

  • Blanch J-S, Llusià J, Niinemets Ü, Noe SM, Peñuelas J (2011) Instantaneous and historical temperature effects on α-pinene emissions in Pinus halepensis and Quercus ilex. J Environ Biol 32:1–6

    PubMed  CAS  Google Scholar 

  • Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Chang Biol 13:2538–2550

    Article  Google Scholar 

  • Blande JD, Holopainen JK, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37:1892–1904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bracho Nunez A, Knothe N, Liberato MAR, Schebeske G, Ciccioli P, Piedade MTF, Kesselmeier J (2009) Flooding effects on plant physiology and VOC emissions from Amazonian tree species from two different flooding environments: Varzea and Igapo. Geophys Res Abstr 11:EGU2009–EGU1497

    Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 253–284

    Chapter  Google Scholar 

  • Calogirou A, Larsen BR, Brussol C, Duane M, Kotzias D (1996) Decomposition of terpenes by ozone during sampling on Tenax. Anal Chem 68:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Cescatti A, Niinemets Ü (2004) Sunlight capture. Leaf to landscape. In: Smith WK, Vogelmann TC, Chritchley C (eds) Photosynthetic adaptation. Chloroplast to landscape, Ecological studies, vol 178. Springer, Berlin, pp 42–85

    Google Scholar 

  • Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Chang Biol 19:1985–2000

    Article  PubMed  Google Scholar 

  • Chameides WL, Fehsenfeld F, Rodgers MO, Cardelino C, Martinez J, Parrish D, Lonneman W, Lawson DR, Rasmussen RA, Zimmerman P, Greenberg J, Middleton P, Wang T (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037–6055

    Article  CAS  Google Scholar 

  • Chen X, Hopke PK (2009) A chamber study of secondary organic aerosol formation by linalool ozonolysis. Atmos Environ 43:3935–3940

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  PubMed  CAS  Google Scholar 

  • Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12:141–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooter EJ, Rea A, Bruins R, Schwede D, Dennis R (2013) The role of the atmosphere in the provision of ecosystem services. Sci Total Environ 448:197–208

    Article  PubMed  CAS  Google Scholar 

  • Copolovici LO, Niinemets Ü (2005) Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere 61:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Copolovici L, Niinemets Ü (2016) Environmental impacts on plant volatile emission. In: Blande J, Glinwood R (eds) Deciphering chemical language of plant communication, Signaling and communication in plants. Springer International Publishing, Berlin, pp 35–59

    Chapter  Google Scholar 

  • Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets Ü (2011) Volatile emissions from Alnus glutinosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 37:18–28

    Article  PubMed  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    Article  PubMed  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014a) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copolovici L, Väärtnõu F, Portillo Estrada M, Niinemets Ü (2014b) Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiol 34:1399–1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Darbah JNT, Sharkey TD, Calfapietra C, Karnosky DF (2010) Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environ Pollut 158:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • DeLucia EH, Casteel CL, Nabity PD, O’Neill BF (2008) Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc Natl Acad Sci U S A 105:1781–1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    Article  PubMed  CAS  Google Scholar 

  • Dindorf T, Kuhn U, Ganzeveld L, Schebeske G, Ciccioli P, Holzke C, Köble R, Seufert G, Kesselmeier J (2006) Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. J Geophys Res Atmos 111:D16305

    Article  CAS  Google Scholar 

  • Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A (2016) Monoterpene biosynthesis potential of plant subcellular compartments. New Phytol 209:679–690

    Article  PubMed  CAS  Google Scholar 

  • Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I-H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen LB, Jørgensen S, Kjaergaard HG, Canagaratna M, Dal Maso M, Berndt T, Petäjä T, Wahner A, Kerminen V-M, Kulmala M, Worsnop DR, Wildt J, Mentel TF (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476–479

    Article  PubMed  CAS  Google Scholar 

  • Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8:3937–3949

    Article  CAS  Google Scholar 

  • Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4952

    Article  PubMed  CAS  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998

    Article  PubMed  CAS  Google Scholar 

  • Farré-Armengol G, Filella I, Llusià J, Primante C, Peñuelas J (2015) Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.) Biochem Syst Ecol 63:51–58

    Article  CAS  Google Scholar 

  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6:389–430

    Article  CAS  Google Scholar 

  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B (eds) (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, USA

    Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MA, Coopman R, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982

    Article  PubMed  CAS  Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575

    Article  Google Scholar 

  • Gray DW, Goldstein AH, Lerdau M (2006) Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa. Plant Cell Environ 29:1298–1308

    Article  PubMed  Google Scholar 

  • Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 315–355

    Chapter  Google Scholar 

  • Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107. https://doi.org/10.1029/2001JD001242

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  CAS  Google Scholar 

  • Guenther A (2013a) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmos Sci 2013:786290

    Google Scholar 

  • Guenther A (2013b) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 391–414

    Chapter  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  CAS  Google Scholar 

  • Gutierrez AP, Ponti L (2014) Analysis of invasive insects: links to climate change. In: Ziska LH, Dukes JS (eds) Invasive species and global climate change. CABI Publishing, Wallingford, pp 45–61

    Google Scholar 

  • Hantula J, Kurkela T, Hendry S, Yamaguchi T (2009) Morphological measurements and ITS sequences show that the new alder rust in Europe is conspecific with Melampsoridium hiratsukanum in eastern Asia. Mycologia 101:622–631

    Article  PubMed  CAS  Google Scholar 

  • Harley P, Greenberg J, Niinemets Ü, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099

    Article  CAS  Google Scholar 

  • Hartikainen K, Nerg A-M, Kivimäenpää M, Kontunen-Sopplea S, Mäenpää M, Oksanen E, Rousi M, Holopainen T (2009) Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Helmig D, Revermann T, Pollmann J, Kaltschmidt O, Hernandez AJ, Bocquet F, David D (2003) Calibration system and analytical considerations for quantitative sesquiterpene measurements in air. J Chromatogr A 1002:193–211

    Article  PubMed  CAS  Google Scholar 

  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants – a mechanism for associational herbivore resistance? New Phytol 186:722–732

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 285–314

    Chapter  Google Scholar 

  • Huang S-H, Cheng C-H, Wu W-J (2010) Possible impacts of climate change on rice insect pests and management tactics in Taiwan. Crop Environ Bioinform 7:269–279

    CAS  Google Scholar 

  • Huff Hartz KE, Rosenørn T, Ferchak SR, Raymond TM, Bilde M, Donahue NM, Pandis SN (2005) Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. J Geophys Res Atmos 110:D14208, https://doi.org/10.11029/12004JD005754

  • Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets Ü, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Jacob DJ, Field BD, Li Q, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res Atmos 110:D08303, https://doi.org/10.01029/02004JD005172

  • Jiang Y, Ye J, Li S, Niinemets Ü (2016a) Regulation of floral terpenoid emission and biosynthesis in sweet basil (Ocimum basilicum). J Plant Growth Regul 35:921–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Ye J, Veromann L-L, Niinemets Ü (2016b) Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Tree Physiol 38:856–872

    Article  CAS  Google Scholar 

  • Karl T, Guenther A, Turnipseed A, Patton EG, Jardine K (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5:1287–1294

    Article  CAS  Google Scholar 

  • Karlik JF, Winer AM (2001) Measured isoprene emission rates of plants in California landscapes: comparison to estimates from taxonomic relationships. Atmos Environ 35:1123–1131

    Article  CAS  Google Scholar 

  • Kask K, Kännaste A, Talts E, Copolovici L, Niinemets Ü (2016) How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell Environ 39:2027–2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys 9:4053–4076

    Article  CAS  Google Scholar 

  • Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega IK, Wagner R, Adamov A, Amorim A, Bernhammer A-K, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan RC, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle CR, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan AP, Pringle K, Rap A, Richards NAD, Riipinen I, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Scott CE, Seinfeld JH, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel AL, Wagner AC, Wagner PE, Weingartner E, Wimmer D, Winkler PM, Ye P, Zhang X, Hansel A, Dommen J, Donahue NM, Worsnop DR, Baltensperger U, Kulmala M, Carslaw KS, Curtius J (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526

    Article  PubMed  CAS  Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, USA, pp 953–1028

    Google Scholar 

  • Kleist E, Mentel TF, Andres S, Bohne A, Folkers A, Kiendler-Scharr A, Rudich Y, Springer M, Tillmann R, Wildt J (2012) Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 9:5111–5123

    Article  CAS  Google Scholar 

  • Kosina J, Dewulf J, Viden I, Pokorska O, Van Langenhove H (2013) Dynamic capillary diffusion system for monoterpene and sesquiterpene calibration: quantitative measurement and determination of physical properties. Int J Environ Anal Chem 93:637–649

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 237–252

    Chapter  Google Scholar 

  • Kreuzwieser J, Kühnemann F, Martis A, Rennenberg H, Urban W (2000) Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiol Plant 108:79–86

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, te Lintel HS, Scheerer U, Huglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees – correlation with physiological and environmental parameters. Physiol Plant 113:41–49

    Article  CAS  Google Scholar 

  • Kulmala M, Laakso L, Lehtinen KEJ, Riipinen I, Dal Maso M, Anttila T, Kerminen V-M, Hõrrak U, Vana M, Tammet H (2004a) Initial steps of aerosol growth. Atmos Chem Phys 4:2553–2560

    Article  CAS  Google Scholar 

  • Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik Ü, Aaalto P, Keronen P, Hakola H, Bäck J, Hoffmann T, Vesala T, Hari P (2004b) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562

    Article  CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 489–508

    Chapter  Google Scholar 

  • Lerdau M (2007) A positive feedback with negative consequences. Science 316:212–213

    Article  PubMed  CAS  Google Scholar 

  • Lerdau M, Slobodkin K (2002) Trace gas emissions and species-dependent ecosystem services. Trends Ecol Evol 17:309–312

    Article  Google Scholar 

  • Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 119–151

    Chapter  Google Scholar 

  • Liavonchanka A, Feussner N (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    Article  PubMed  CAS  Google Scholar 

  • Llusià J, Peñuelas J, Sardans J, Owen SM, Niinemets Ü (2010) Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Glob Ecol Biogeogr 19:863–874

    Article  Google Scholar 

  • Llusià J, Sardans J, Niinemets Ü, Owen SM, Peñuelas J (2014) A screening study of leaf terpene emissions of 43 rainforest species in Danum Valley Conservation Area (Borneo) and their relationships with chemical and morphological leaf traits. Plant Biosyst 148:307–317

    Article  Google Scholar 

  • Loreto F, Fares S (2007) Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiol 143:1096–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loreto F, Förster A, Dürr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21:101–107

    Article  CAS  Google Scholar 

  • Loreto F, Nascetti P, Graverini A, Mannozzi M (2000) Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, Pinus pinea. Funct Ecol 14:589–595

    Article  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by leaves. Tree Physiol 24:361–367

    Article  PubMed  CAS  Google Scholar 

  • Malm WC, Gebhart KA, Molenar J, Cahill T, Eldred R, Huffman D (1994) Examining the relationship between atmospheric aerosols and light extinction at Mount Rainier and North Cascades National Parks. Atmos Environ 28:347–360

    Article  CAS  Google Scholar 

  • Mentel TF, Wildt J, Kiendler-Scharr A, Kleist E, Tillmann R, Dal Maso M, Fisseha R, Hohaus T, Spahn H, Uerlings R, Wegener R, Griffiths PT, Dinar E, Rudich Y, Wahner A (2009) Photochemical production of aerosols from real plant emissions. Atmos Chem Phys 9:4387–4406

    Article  CAS  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  PubMed  CAS  Google Scholar 

  • Misson L, Lunden M, McKay M, Goldstein AH (2005) Atmospheric aerosol light scattering and surface wetness influence the diurnal pattern of net ecosystem exchange in a semi-arid ponderosa pine plantation. Agric For Meteorol 129:69–83

    Article  Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Tansley review. Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    Article  PubMed  CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves. Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1336

    Article  CAS  Google Scholar 

  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002a) Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 153:243–256

    Article  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002b) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010a) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    Article  CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010b) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    Article  CAS  Google Scholar 

  • Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26:136–142

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci Front Plant-Microbe Interact 4:262

    Google Scholar 

  • Niinemets Ü, Sun Z, Talts E (2015) Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves. Plant Cell Environ 38:2707–2720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noe SM, Copolovici L, Niinemets Ü, Vaino E (2008) Foliar limonene uptake scales positively with leaf lipid content: “non-emitting” species absorb and release monoterpenes. Plant Biol 10:129–137

    Article  PubMed  CAS  Google Scholar 

  • Nölscher AC, Williams J, Sinha V, Custer T, Song W, Johnson AM, Axinte R, Bozem H, Fischer H, Pouvesle N, Phillips G, Crowley JN, Rantala P, Rinne J, Kulmala M, Gonzales D, Valverde-Canossa J, Vogel A, Hoffmann T, Ouwersloot HG, Vilà-Guerau de Arellano J, Lelieveld J (2012) Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos Chem Phys 12:8257–8270

    Article  CAS  Google Scholar 

  • Pazouki L, Niinemets Ü (2016) Multi-substrate terpenoid synthases: their occurrence and physiological significance. Front Plant Sci 7:1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazouki L, Kanagendran A, Li S, Kännaste A, Rajabi Memari H, Bichele R, Niinemets Ü (2016) Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses. Environ Exp Bot 132:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng J, van Loon JJ, Zheng S, Dicke M (2011) Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. Plant Biol 13:276–284

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404

    Article  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  CAS  Google Scholar 

  • Põldmaa K (1997) Explosion of Melampsoridium sp. on Alnus incana. Folia Cryptogamica Estonica 31:48–51

    Google Scholar 

  • Portillo-Estrada M, Kazantsev T, Talts E, Tosens T, Niinemets Ü (2015) Emission timetable and quantitative patterns of wound-induced volatiles across different damage treatments in aspen (Populus tremula). J Chem Ecol 41:1105–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Chang Biol 17:1595–1610

    Article  Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 209–235

    Chapter  Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 47–93

    Chapter  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasulov B, Bichele I, Hüve K, Vislap V, Niinemets Ü (2015) Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls. Plant Cell Environ 38:751–766

    Article  PubMed  CAS  Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  PubMed  Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, vol 5. Springer, Berlin, pp 95–118

    Chapter  Google Scholar 

  • Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk W, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences 5:1085–1100

    Article  CAS  Google Scholar 

  • Russo A, Escobedo FJ, Zerbe S (2016) Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environ Sci 3:58–76

    Article  Google Scholar 

  • Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shindell D, Faluvegi G, Lacis A, Hansen J, Ruedy R, Aguilar E (2006) Role of tropospheric ozone increases in 20th-century climate change. J Geophys Res Atmos 111:D08302, 083. https://doi.org/10.01029/02005JD006348

    Article  Google Scholar 

  • Simon V, Dumergues L, Ponche J-L, Torres L (2006) The biogenic volatile organic compounds emission inventory in France. Application to plant ecosystems in the Berre-Marseilles area (France). Sci Total Environ 372:164–182

    Article  PubMed  CAS  Google Scholar 

  • Sinha V, Williams J, Lelieveld J, Ruuskanen TM, Kajos MK, Patokoski J, Hellen H, Hakola H, Mogensen D, Boy M, Rinne J, Kulmala M (2010) OH reactivity measurements within a boreal forest: evidence for unknown reactive emissions. Environ Sci Technol 44:6614–6620

    Article  PubMed  CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794

    Article  PubMed  CAS  Google Scholar 

  • Spracklen DV, Bonn B, Carslaw KS (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc Lond A 366:4613–4626

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21:385–395

    Article  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2011) Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature. Biogeosciences 8:2757–2771

    Article  CAS  Google Scholar 

  • Staudt M, Mir C, Joffre R, Rambal S, Bonin A, Landais D, Lumaret R (2004) Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. New Phytol 163:573–584

    Article  CAS  Google Scholar 

  • Stavrakou T, Guenther A, Razavi A, Clarisse L, Clerbaux C, Coheur P-F, Hurtmans D, Karagulian F, De Maziére M, Vigouroux C, Amelynck C, Schoon N, Laffineur Q, Heinesch B, Aubinet M, Rinsland C, Müller J-F (2011) First space-based derivation of the global atmospheric methanol emission fluxes. Atmos Chem Phys 11:4873–4898

    Google Scholar 

  • Still CJ, Riley WJ, Biraud SC, Noone DC, Buenning NH, Randerson JT, Torn MS, Welker JM, White JWC, Vachon R, Farquhar GD, Berry JA (2009) Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exchanges. J Geophys Res Biogeosci 114:G01018

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2014) Climate change 2014: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, USA

    Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Chang Biol 18:3423–3440

    Article  Google Scholar 

  • Sun Z, Hüve K, Vislap V, Niinemets Ü (2013) Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. J Exp Bot 64:5509–5523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0143

    Article  PubMed  PubMed Central  Google Scholar 

  • Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes – common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Tooker JF, Frank SD (2012) Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49:974–985

    Article  Google Scholar 

  • Vanhanen H (2008) Invasive insects in Europe – the role of climate change and global trade. Dissertationes Forestales 57. Faculty of Forest Sciences, University of Joensuu, 33 pages

    Google Scholar 

  • Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • von Dahl C, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant-herbivore interaction? Plant J 46:948–960

    Article  CAS  Google Scholar 

  • Voulgarakis A, Naik V, Lamarque J-F, Shindell DT, Young PJ, Prather MJ, Wild O, Field RD, Bergmann D, Cameron-Smith P, Cionni I, Collins WJ, Dalsøren SB, Doherty RM, Eyring V, Faluvegi G, Folberth GA, Horowitz LW, Josse B, MacKenzie IA, Nagashima T, Plummer DA, Righi M, Rumbold ST, Stevenson DS, Strode SA, Sudo K, Szopa S, Zeng G (2013) Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos Chem Phys 13:2563–2587

    Article  CAS  Google Scholar 

  • Widegren JA, Bruno TJ (2010) Vapor pressure measurements on low-volatility terpenoid compounds by the concatenated gas saturation method. Environ Sci Technol 44:388–393

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Chang Biol 15:1189–1200

    Article  Google Scholar 

  • Winters AJ, Adams MA, Bleby TM, Rennenberg H, Steigner D, Steinbrecher R, Kreuzwieser J (2009) Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos Environ 43:3035–3043

    Article  CAS  Google Scholar 

  • Zhang P-J, Zheng S-J, van Loona JJA, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in lima bean. Proc Natl Acad Sci U S A 106:21202–21207

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Prof. Josep Peñuelas (Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia) and Dr. Trevor F. Keenan (Earth and Environmental Sciences, Lawrence Berkeley National Lab, USA) for insightful comments on the MS. My work on plant volatiles has been supported by the Estonian Ministry of Science and Education (institutional grant IUT-8-3) and the European Commission through the European Research Council (advanced grant 322603, SIP-VOL+) and the European Regional Development Fund (Centre of Excellence EcolChange, TK 131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Niinemets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niinemets, Ü. (2018). What Are Plant-Released Biogenic Volatiles and How They Participate in Landscape- to Global-Level Processes?. In: Perera, A., Peterson, U., Pastur, G., Iverson, L. (eds) Ecosystem Services from Forest Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-319-74515-2_3

Download citation

Publish with us

Policies and ethics