Skip to main content

Compact CPW-Fed Microstrip Octagonal Patch Antenna with Hilbert Fractal Slots for WLAN and WIMAX Applications

  • Conference paper
  • First Online:
Innovations in Smart Cities and Applications (SCAMS 2017)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 37))

Included in the following conference series:

Abstract

In this paper, a Coplanar Wave Guide (CPW)-Fed microstrip octagonal patch antenna for WLAN and WIMAX Applications is proposed. The studied structure is suitable for 2.3/2.5/3.3/3.5/5/5.5 GHz WIMAX and for 3.6/2.4–2.5/4.9–5.9 GHz WLAN applications. The octagonal shape is obtained by cutting a small triangular part in the four angles of the rectangular microstrip patch antenna; in addition the using of CPW-Fed allows obtaining Ultra Wide Band (UWB) characteristics. The miniaturization in the antenna size for lower band is achieved by introducing the Hilbert fractal slots in the radiating element. The proposed antenna is designed on a single and a small substrate board of dimensions 46 × 40 × 1.6 mm3. Moreover the setup of Hilbert fractal slots allows obtaining lower resonant frequencies, more −10 dB bandwidths, more resonant frequencies and important gains. All the simulations were performed in CADFEKO, a Method of Moment (MoM) based solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korowajczuk, L.: LTE, WIMAX, and WLAN Network Design, Optimization and Performance Analysis. Wiley, Chichester (2011)

    Book  Google Scholar 

  2. Borhani, M., Rezaei, P., Valizade, A.: Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems. IEEE Antennas Wirel. Propag. Lett. 15, 822–825 (2016)

    Article  Google Scholar 

  3. Boukarkar, A., Lin, X.Q., Jiang, Y.: A dual-band frequency-tunable magnetic dipole antenna for WiMAX/WLAN applications. IEEE Antennas Wirel. Propag. Lett. 15, 492–495 (2016)

    Article  Google Scholar 

  4. Shi, X.W., Wu, T., Bai, H., Li, P.: Tri-band microstrip-fed monopole antenna with dualpolarisation characteristics for WLAN and WiMAX applications. Electron. Lett. 49(25), 1597–1598 (2013)

    Article  Google Scholar 

  5. Wen, J., Wenquan, C.: A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas Wirel. Propag. Lett. 11, 293–296 (2012)

    Article  Google Scholar 

  6. Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A., El Ouadih, A., Bouchouirbat, M.: CPW-Fed H-tree fractal antenna for WLAN, WIMAX, RFID, C-band, HiperLAN, and UWB applications. Int. J. Microw. Wirel. Technol. 1–8 (2015)

    Google Scholar 

  7. Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A., El Ouadih, A., Bouchouirbat, M.: CPW-Fed slotted CANTOR set fractal antenna for WiMAX and WLAN applications. Int. J.Microw. Wirel. Technol. 1–7, May 2016

    Google Scholar 

  8. Basaran, S.C., Olgun, U., Sertel, K.: Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications. Electron. Lett. 49(10), 636–638 (2013)

    Article  Google Scholar 

  9. Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11n, 802.11ac, and Wi-Fi Direct, 2nd edn. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  10. Gast, M.: 802.11 Wireless Networks: The Definitive Guide, 2nd edn. O’Reilly, Beijing (2005)

    Google Scholar 

  11. Bakariya, P.S., Dwari, S., Sarkar, M., Mandal, M.K.: Proximity-coupled microstrip antenna for bluetooth, WiMAX, and WLAN applications. IEEE Antennas Wirel. Propag. Lett. 14, 755–758 (2015)

    Article  Google Scholar 

  12. Chen, H.T., Wong, K.L., Chiou, T.W.: PIFA with a meandered and folded patch for the dual-band mobile phone application. IEEE Trans. Antennas Propag. 51(9), 2468–2471 (2013)

    Article  Google Scholar 

  13. Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A.: Fractal antennas : a novel miniaturization technique for wireless networks. Trans. Netw. Commun. 2(5), 165–193 (2014)

    Google Scholar 

  14. Sun, S., Zhu, L.: Miniaturised patch hybrid couplers using asymmetrically loaded cross slots. IET Microw. Antennas Propag. 4(9), 1427 (2010)

    Article  Google Scholar 

  15. Chi, P.L., Waterhouse, R., Itoh, T.: Antenna miniaturization using slow wave enhancement factor from loaded transmission line models. IEEE Trans. Antennas Propag. 59(1), 48–57 (2011)

    Article  Google Scholar 

  16. Skrivervik, A.K., Zürcher, J.F., Staub, O., Mosig, J.R.: PCS antenna design: the challenge of miniaturization. IEEE Antenn Propag Mag. 43(4), 12–27 (2001)

    Article  Google Scholar 

  17. Reha, A., El Amri, A., Saih, M., Benhmammouch, O., Oulad Said, A.: The behavior of a CPW-Fed microstrip hexagonal patch antenna with H-Tree Fractal slots. Rev. Méditerranéenne Télécommunication 5(2), 104–108 (2015)

    Google Scholar 

  18. Kakoyiannis, C.G., Constantinou, P.: A compact microstrip antenna with tapered peripheral slits for CubeSat RF payloads at 436 MHz: miniaturization techniques, design, and numerical results. In: Proceedings of the IEEE International Workshop on Satellite and Space Communications (IWSSC08), pp. 255–259 (2008)

    Google Scholar 

  19. Anguera, J., Boada, L., Puente, C., Borja, C., Soler, J.: Stacked H-shaped microstrip patch antenna. IEEE Trans. Antennas Propag. 52(4), 983–993 (2004)

    Article  Google Scholar 

  20. Bokhari, S.A., Zurcher, J.F., Mosig, J.R., Gardiol, F.E.: A small microstrip patch antenna with a convenient tuning option. IEEE Trans. Antennas Propag. 44(11), 1521–1528 (1996)

    Article  Google Scholar 

  21. Chatterjee, S., Ghosh, K., Paul, J., Chowdhury, S.K., Chanda, D., Sarkar, P.P.: Compact microstrip antenna for mobile communication. Microw. Opt. Technol. Lett 55(5), 954–957 (2013)

    Article  Google Scholar 

  22. Chen, W.S., Wu, C.K.: Wong, K.l.: Square-ring microstrip antenna with a crossstrip for compact circular polarization operation. IEEE Trans. Antennas Propag. 47(10), 1566–1568 (1999)

    Article  Google Scholar 

  23. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983)

    Google Scholar 

  24. Mandelbrot, B.B.: Les Objets Fractals. 4e éd., Flammarion (1995)

    Google Scholar 

  25. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  26. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38, 459–460 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gonzalez-Arbesu, J.M., Blanch, S., Romeu, J.: THE Hilbert curve as a small self-resonant monopole from a practical point of vieW. Microwave Optical Technol. Lett. 39(1), 45–49 (2003)

    Article  Google Scholar 

  28. Murad, N.A., et al.: Hilbert curve fractal antenna for RFID application. In: Proceedings of International RF and Microwave Conference, 12–14 September 2006, Putrajaya, Malaysia, pp. 182–186 (2006)

    Google Scholar 

  29. Sanz, I., et al.: The Hilbert monopole revisited. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2010)

    Google Scholar 

  30. Huang, J.-T., Shiao, J.-H., Wu, J.-M.: A miniaturized Hilbert inverted-F antenna for wireless sensor network applications. IEEE Trans. Antennas Propag. 58(9), 3100–3103 (2010)

    Article  Google Scholar 

  31. Suganthi, S.: Study of compact Hilbert curve fractal antennas for implantable medical applications. Int. J. Emerg. Technol. Adv. Eng. 2(10), 116–125 (2012)

    MathSciNet  Google Scholar 

  32. Reha, A., El Amri, A.: Design, realization and measurements of CPW-Fed microstrip hexagonal patch antenna with H-tree fractal slots for WLAN and WIMAX applications. Int. J. Microw. Opt. Technol. 11(4), 251–258 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Tarbouch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarbouch, M., El amri, A., Terchoune, H., Barrou, O. (2018). Compact CPW-Fed Microstrip Octagonal Patch Antenna with Hilbert Fractal Slots for WLAN and WIMAX Applications. In: Ben Ahmed, M., Boudhir, A. (eds) Innovations in Smart Cities and Applications. SCAMS 2017. Lecture Notes in Networks and Systems, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-74500-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74500-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74499-5

  • Online ISBN: 978-3-319-74500-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics