Skip to main content

\(E_7\), \(F_4\) and Supergravity Scalar Potentials

  • Chapter
  • First Online:
Advances in Geometry and Lie Algebras from Supergravity

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1168 Accesses

Abstract

As we mentioned in previous chapters, theIRexceptional Lie algebras, for long time regarded as mathematical curiosities, came to the forefront of research with the advent of supergravity.

To him who looks upon the world rationally, the world in its turn presents a rational aspect. The relation is mutual.

Georg Wilhelm Friedrich Hegel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance, we have \(\gamma _5 \, \varepsilon _A= \varepsilon _A\) and \(\gamma _5 \, \varepsilon ^A = - \varepsilon ^A\).

  2. 2.

    We denote by \( \lambda ^i\) the right handed chiral projection while \(\lambda _i\) are the left handed ones.

  3. 3.

    As already stressed, the v.e.v.s of all the fermions are zero and Eq. (7.1.8) guarantees that they remain zero under supersymmetry transformations of parameters (7.1.9).

  4. 4.

    Here we have used the notation, \(\phi ^{ABCD} \equiv (\phi _{ABCD})^*\).

  5. 5.

    In the rheonomy approach closure of the Bianchi identities.

  6. 6.

    For example, in the de Wit–Nicolai theory, where one gauges \(G_{gauge} =\mathrm {SO(8)}\) we have:

    $$ t^{(1)}_{\varOmega \varSigma }{}^{\varPi \varGamma }{}_{\varDelta \varLambda }= \delta _{[\varDelta }^{[\varPi }\delta _{\varLambda ][\varOmega } \delta _{\varSigma ]}^{\varGamma ]}\,,\qquad t^{(2)}_{\varOmega \varSigma }{}^{\varPi \varGamma \varDelta \varLambda }=0 \,. $$
  7. 7.

    Note that some of the 28 generators of \({\mathscr {G}}_{gauge}(h,\ell ) \, \subset \, \mathrm {SL}(8,\mathbb {R})\) may be represented trivially in the adjoint representation, but in this case also the corresponding group transformations leave the embedding matrix invariant.

  8. 8.

    Just as in [56] we mention scalar fields that typically have non canonical kinetic terms.

  9. 9.

    Note that here, for simplicity we have dropped the suffix \(\mathscr {SK}\). This is done for simplicity since there is no risk of confusion.

References

  1. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141–212 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. B. De Wit, H. Nicolai, N=8 supergravity with local SO(8) \(\times \) SU(8) invariance. Phys. Lett. 108B, 285 (1982)

    Article  ADS  Google Scholar 

  3. B. de Wit, H. Nicolai, N=8 supergravity. Nucl. Phys. B 208, 323 (1982)

    Article  ADS  Google Scholar 

  4. P.G.O. Freund, M.A. Rubin, Dynamics of dimensional reduction. Phys. Lett. B 97, 233–235 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Castellani, R. D’Auria, P. Fré, \({\rm {SU}}(3)\otimes {\rm {SU}}(2)\otimes {\rm {U}}(1)\) from D=11 supergravity. Nucl. Phys. B 239, 610–652 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Englert, Spontaneous compactification of eleven-dimensional supergravity. Phys. Lett. B 119, 339–342 (1982)

    Article  ADS  Google Scholar 

  7. M.A. Awada, M.J. Duff, C.N. Pope, \(\cal{N}=8\) supergravity breaks down to \(\cal{N}=1\). Phys. Rev. Lett. 50, 294 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. D’Auria, P. Fré, P. Van Nieuwenhuizen, \({\cal{N}}=2\) matter coupled supergravity from compactification on a coset G/H possessing an additional killing vector. Phys. Lett. B 136, 347–353 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Castellani, L.J. Romans, \(N=3\) and \(N=1\) supersymmetry in a new class of solutions for \(d=11\) supergravity. Nucl. Phys. B 238, 683–701 (1984)

    Article  ADS  Google Scholar 

  10. L. Castellani, L.J. Romans, N.P. Warner, A classification of compactifying solutions for D=11 supergravity. Nucl. Phys. B 241, 429–462 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. D’Auria, P. Fré, On the fermion mass-spectrum of Kaluza-Klein supergravity. Ann. Phys. 157, 1–100 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.Z. Freedman, H. Nicolai, Multiplet shortening in \({\rm {Osp}}(N\vert 4)\). Nucl. Phys. B 237, 342–366 (1984)

    Article  ADS  MATH  Google Scholar 

  13. A. Ceresole, P. Fré, H. Nicolai, Multiplet structure and spectra of \({\cal{N}}=2\) supersymmetric compactifications. Class. Quantum Gravity 2, 133 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. A. Casher, F. Englert, H. Nicolai, M. Rooman, The mass spectrum of supergravity on the round seven sphere. Nucl. Phys. B 243, 173 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Duff, B. Nilsson, C. Pope, Kaluza klein supergravity. Phys. Rep. 130, 1 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. C.M. Hull, Noncompact gaugings of \(N=8\) supergravity. Phys. Lett. 142B, 39 (1984)

    ADS  MathSciNet  Google Scholar 

  17. C.M. Hull, More gaugings of \(N=8\) supergravity. Phys. Lett. 148B, 297–300 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.M. Hull, The construction of new gauged \(N=8\) supergravities. Physica 15D, 230 (1985)

    ADS  MathSciNet  Google Scholar 

  19. C.M. Hull, A new gauging of \(N=8\) supergravity. Phys. Rev. D 30, 760 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. C.M. Hull, N.P. Warner, The potentials of the gauged \(N=8\) supergravity theories. Nucl. Phys. B 253, 675–686 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.M. Hull, N.P. Warner, The structure of the gauged \(N=8\) supergravity theories. Nucl. Phys. B 253, 650–674 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. C.M. Hull, The minimal couplings and scalar potentials of the gauged \(N=8\) supergravities. Class. Quant. Grav. 2, 343 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J. Maldacena, The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 4, 1113–1133 (1999). https://doi.org/10.1023/A:1026654312961 [hep-th/9711200]

  24. R. Kallosh, A. Van Proeyen, Conformal symmetry of supergravities in AdS spaces. Phys. Rev. D 60, 026001 (1999). https://doi.org/10.1103/PhysRevD.60.026001 [hep- th/9804099]

  25. S. Ferrara, C. Fronsdal, A. Zaffaroni, On \({\cal{N}}=8\) supergravity in AdS\(_5\) and \({\cal{N}}=4\) superconformal Yang-Mills theory. Nucl. Phys. B 532, 153–162 (1998). https://doi.org/10.1016/S0550-3213(98)00444-1 [hep-th/9802203]

  26. S. Ferrara, A. Zaffaroni, Superconformal field theories, multiplet shortening, and the AdS(5) / SCFT(4) correspondence, in Conference Moshe Flato Dijon, France, September 5–8, (1999), pp. 177–188

    Google Scholar 

  27. S. Ferrara, M. Porrati, A. Zaffaroni, N=6 supergravity on AdS(5) and the SU(2,2/3) superconformal correspondence. Lett. Math. Phys. 47, 255–263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Ceresole, G. Dall’Agata, R. D’Auria, S. Ferrara, Spectrum of type IIB supergravity on \(AdS_5\times T^{11}\): predictions on \(\cal{N}=1\) SCFT’s. Phys. Rev. D 61, 066001 (2000). [hep-th/9905226]

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Fabbri, P. Fré, L. Gualtieri, P. Termonia, \({\rm {Osp(N|4)}}\) supermultiplets as conformal superfields on \(\partial {\rm {AdS}}_4\) and the generic form of \(\cal{N}=2\), D=3 gauge theories. Class. Quantum Gravity 17, 55 (2000). [hep-th/9905134]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. D. Fabbri, P. Fré, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni, A. Zampa, 3D superconformal theories from Sasakian seven-manifolds: new non-trivial evidences for \({\rm {AdS}}_4 / {\rm {CFT}}_3\). Nucl. Phys. B, 577, 547–608 (2000). [hep- th/9907219]

    Google Scholar 

  31. M. Billó, D. Fabbri, P. Fré, P. Merlatti, A. Zaffaroni, Shadow multiplets in \({\rm{AdS}}_4/{\rm{CFT}}_3\) and the super-Higgs mechanism: hints of new shadow supergravities. Nucl. Phys. B 591, 139–194 (2000). [hep-th/0005220]

    Article  ADS  MATH  Google Scholar 

  32. D. Fabbri, P. Fré, L. Gualtieri, P. Termonia, M-theory on \({\rm{AdS}}_4\times {\rm{M}}^{1,1,1}\): the complete \({\rm{Osp}}(2|4) \times {\rm{SU}}(3)\times {\rm{SU}}(2)\) spectrum from harmonic analysis. Nucl. Phys. B 560, 617–682 (1999). [hep-th/9903036]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. F. Cordaro, P. Fre, L. Gualtieri, P. Termonia, M. Trigiante, N=8 gaugings revisited: an exhaustive classification. Nucl. Phys. B 532, 245–279 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. B. de Wit, H. Samtleben, M. Trigiante, On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B 655, 93–126 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. B. De Wit, H. Samtleben, M. Trigiante, Gauging maximal supergravities. Fortsch. Phys. 52, 489–496 (2004)

    Google Scholar 

  36. B. De Wit, H. Samtleben, M. Trigiante, The maximal D=4 supergravities. JHEP 06, 049 (2007)

    Google Scholar 

  37. M. Trigiante, Gauged supergravities. Phys. Rept. 680, 1–175 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. H. Samtleben, Lectures on gauged supergravity and flux compactifications. Class. Quant. Grav. 25, 214002 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. P. Fre, M. Trigiante, A. Van Proeyen, Stable de Sitter vacua from N=2 supergravity. Class. Quant. Grav. 19, 4167–4194 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. S. Ferrara, P. van Nieuwenhuizen, Noether coupling of massive gravitinos to \(N=1\) supergravity. Phys. Lett. 127B, 70–74 (1983)

    Article  ADS  Google Scholar 

  41. M. de Roo, Gauged N=4 matter couplings. Phys. Lett. 156B, 331–334 (1985)

    Article  ADS  Google Scholar 

  42. S. Cecotti, L. Girardello, M. Porrati, Some features of SUSY breaking in \(N=2\) supergravity. Phys. Lett. 151B, 367–371 (1985)

    Article  ADS  MATH  Google Scholar 

  43. S. Ferrara, P. Fre, L. Girardello, Spontaneously broken N=3 supergravity. Nucl. Phys. B 274, 600–618 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  44. YuM Zinovev, Spontaneous symmetry breaking in N=2 supergravity with matter. Int. J. Mod. Phys. A 7, 7515–7539 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. S. Ferrara, L. Girardello, M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity. Phys. Lett. B 366, 155–159 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Fre, L. Girardello, I. Pesando, M. Trigiante, Spontaneous N=2 -¿ N=1 local supersymmetry breaking with surviving compact gauge group. Nucl. Phys. B 493, 231–248 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. L. Girardello, M. Porrati, A. Zaffaroni, Spontaneously broken N=2 supergravity without light mirror fermions. Nucl. Phys. B 505, 272–290 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. S. Cecotti, L. Girardello, M. Porrati, Ward identities of local supersymmetry and spontaneous breaking of extended supergravity, in Johns Hopkins Workshop on Current Problems in Particle Theory 9: New Trends in Particle Theory Florence, Italy, June 5–7 (1985)

    Google Scholar 

  49. S. Ferrara, L. Maiani, An introduction to supersymmetry breaking in extended supergravity, in 5th SILARG Symposium on Relativity, Supersymmetry and Cosmology. Bariloche, Argentina, January 4–11, (1985), p. 349

    Google Scholar 

  50. M. De Roo, P. Wagemans, Partial supersymmetry breaking in \(N=4\) supergravity. Phys. Lett. B177, 352 (1986)

    Google Scholar 

  51. M. de Roo, P. Wagemans, Gauge matter coupling in \(N=4\) supergravity. Nucl. Phys. B 262, 644 (1985)

    Article  ADS  Google Scholar 

  52. P.C.C. Wagemans, Aspects of N=4 supergravity. Ph.D. thesis, Groningen U (1990)

    Google Scholar 

  53. G. Arcioni, A. Ceresole, F. Cordaro, R. D’Auria, P. Fre, L. Gualtieri, M. Trigiante, N=8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositions. Nucl. Phys. B 542, 273–307 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre, M. Trigiante, E(7)(7) duality, BPS black hole evolution and fixed scalars. Nucl. Phys. B 509, 463–518 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. L. Castellani, R. D’Auria, P. Fré, Supergravity and Superstrings: A Geometric Perspective, vol. 1,2,3 (World Scientific, Singapore, 1991)

    Book  MATH  Google Scholar 

  56. A. Ceresole, G. Dall’Agata, S. Ferrara, M. Trigiante, A. Van Proeyen, A search for an \(\cal{N} =2 \) inflaton potential. Fortsch. Phys. 62, 584–606 (2014)

    Article  ADS  MATH  Google Scholar 

  57. P. Fré, A.S. Sorin, M. Trigiante, The \(c\)- map, Tits Satake subalgebras and the search for \(\cal{N}=2\) inflaton potentials. Fortsch. Phys. 63, 198–258 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Minimal supergravity models of inflation. Phys. Rev. D 88, 085038 (2013)

    Article  ADS  Google Scholar 

  59. P. Fré, A.S. Sorin, Inflation and integrable one-field cosmologies embedded in rheonomic supergravity. Fortsch. Phys. 62, 4–25 (2014)

    Article  ADS  MATH  Google Scholar 

  60. P. Fré, A.S. Sorin, Axial symmetric Kahler manifolds, the \(D\) -map of inflaton potentials and the Picard-Fuchs equation. Fortsch. Phys. 62, 26–77 (2014)

    Article  ADS  MATH  Google Scholar 

  61. S. Ferrara, R. Kallosh, A. Van Proeyen, On the supersymmetric completion of \(R+R^2\) gravity and cosmology. JHEP 11, 134 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Higher order corrections in minimal supergravity models of inflation. JCAP 1311, 046 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Ferrara, P. Fré, A.S. Sorin, On the topology of the inflaton field in minimal supergravity models. JHEP 04, 095 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. S. Ferrara, P. Fre, A.S. Sorin, On the Gauged Khler isometry in minimal supergravity models of inflation. Fortsch. Phys. 62, 277–349 (2014)

    Article  ADS  MATH  Google Scholar 

  65. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. 91B, 99–102 (1980)

    Article  ADS  MATH  Google Scholar 

  66. P. Fayet, J. Iliopoulos, Spontaneously broken supergauge symmetries and goldstone spinors. Phys. Lett. 51B, 461–464 (1974)

    Article  ADS  Google Scholar 

  67. R. Kallosh, A. Linde, D. Roest, Superconformal inflationary \(\alpha \) -attractors. JHEP 11, 198 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. R. Kallosh, A. Linde, D. Roest, Large field inflation and double \(\alpha \) -attractors. JHEP 08, 052 (2014)

    Article  ADS  Google Scholar 

  69. R. Kallosh, A. Linde, D. Roest, The double attractor behavior of induced inflation. JHEP 09, 062 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Giuseppe Fré .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fré, P.G. (2018). \(E_7\), \(F_4\) and Supergravity Scalar Potentials. In: Advances in Geometry and Lie Algebras from Supergravity. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74491-9_7

Download citation

Publish with us

Policies and ethics