Skip to main content

Black Holes and Nilpotent Orbits

  • Chapter
  • First Online:
Advances in Geometry and Lie Algebras from Supergravity

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1173 Accesses

Abstract

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only obtained a new spectacular confirmation of General Relativity but we actually saw the dynamical process of formation of the most intriguing objects populating the Universe, namely black holes.

Deep into that darkness peering, long I stood there, wondering, fearing, doubting, dreaming dreams no mortal ever dared to dream before.

Edgar Allan Poe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There followed a vast literature some items of which are are quoted in [4,5,6,7,8,9,10].

  2. 2.

    Clarification for mathematicians: General Relativity in \(D=3=1\oplus 2\) dimensions is a rather empty field theory. Einstein equations do not describe the propagation of any particle since there are no solutions of the wave-type and the only degree of freedom is the analogue of the Newton potential. Mathematically this follows from the fact that the Riemann tensor is fully determined by the Ricci tensor and the latter is identified by Einstein equations with the stress-energy tensor of matter fields.

  3. 3.

    The special overall normalization of the Poincaré metric is chosen in order to match the general definitions of special geometry applied to the present case.

  4. 4.

    Clarification for mathematicians: the acronym BPS stands for Bogomolny, Prasad and Sommerfeld. It is a notion occuring in the theory of monopoles where one always derives a bound according to which the energy (or mass) of a quasi-particle corresponding to a localized solution of non linear propagation equations is always larger or equal than some kind of charge carried by the quasi-particle. BPS states are those that saturate the bound and typically correspond to shortened representations of the space-time group. In the case of supergravity black–holes the BPS bound relates the mass of the hole with the modulus of the central charge of the supersymmetry algebra. Because of the scope of this book we omit the original definition of the central charge in terms of superalgebras and we confine to give its expression in terms of special Kähler geometrical items (see Eq. (6.4.4)).

  5. 5.

    As we are going to see later, each orbit of Lax operators always contains representatives such that the Taub-NUT charge is zero. Alternatively from a dynamical system point of view the Taub-NUT charge can be annihilated by setting a constraint which is consistent with the hamiltonian and which reduces the dimension of the system by one unit. The problem of black hole physics is therefore equivalent to the sigma model based on an appropriate codimension one hypersurface in the coset manifold \(\mathrm {G}/\mathrm {H}^\star \).

  6. 6.

    See for instance the lecture notes [11].

  7. 7.

    Clarification for mathematicians: for a short but comprehensive introduction to the theory of Black Holes we refer the interested reader to Chaps. 2 and 3 of Volume II of [35] by the present author.

  8. 8.

    Clarification for mathematicians: Extremal in the GR sense means something different than extremal in the \(\sigma \)-model sense. As we mentioned above the extremal Kerr solution, according to General Relativity is the solution where \(m=\alpha \). In the \(\sigma \)-model sense any extremal solution corresponds to a light-like geodesic of the of the \(\mathrm {U}/\mathrm {H}^\star \) manifold. Light-like geodesics, on their turn are associated with \(\mathrm {H}^\star \) orbits of nilpotent \(\mathrm {U}\) Lie algebra elements. As shown above the extremal Kerr solution is obtained from a \(\mathrm {U}/\mathrm {H}^\star \) geodesic that is not light-like so it is not extremal in the \(\sigma \)-model sense.

  9. 9.

    Such solutions actually correspond to different \(\mathrm {G}_{\mathbb {R}}\)-orbits [36].

  10. 10.

    In the literature, see [36], \(\beta \)-labels are defined as the value of the simple roots \(\beta ^i\) of the complexification \(\mathbb {H}_\mathbb {C}\) of \(\mathbb {H}^\star \) on the non-compact element \(X_c\), viewed as a Cartan element of \(\mathbb {H}_\mathbb {C}\) in the Weyl chamber of \((\beta ^i)\). We find it more practical to work with the equivalent characterization (6.6.17).

  11. 11.

    Note that the action of certain Weyl group elements \(g \in \mathscr {W}\) on specific h.s can be the identity: \(g\cdot h = h\). When such stabilizing group elements g are inside \(\mathscr {W}_H\) the number of different h.s inside each lateral classes is accordingly reduced. If there are stabilizing elements g that are not inside \(\mathscr {W}_H\) than two or more \(\mathscr {W}_H\) orbits coincide.

  12. 12.

    For the rationale of our notation we refer the reader to previous Sect. 5.8.

  13. 13.

    See [32] for details, in particular Eq. (3.13) of that reference for the explicit form of the spin \({\textstyle \frac{3}{2}}\) matrices.

  14. 14.

    Actually even the condition \(\mathscr {H}_1 \, = \, \text{ const }\) suffices to annihilate the Taub-NUT charge allowing for a non trivial real part of the z-field. However in this section we analyze the case \(\mathscr {H}_1 \, = \, 0\) for its remarkable simplicity.

References

  1. S. Ferrara, R. Kallosh, A. Strominger, N \(=\) 2 extremal black holes. Phys. Rev. D 52, 5412–5416 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D 54, 1514–1524 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996)

    Google Scholar 

  4. M. Bertolini, M. Trigiante, Microscopic entropy of the most general four-dimensional BPS black hole. JHEP 10, 002 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Dabholkar, Microstates of nonsupersymmetric black holes. Phys. Lett. B 402, 53–58 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Ghosh, P. Mitra, Counting of black hole microstates. Indian J. Phys. 80, 867 (2006)

    Google Scholar 

  7. F. Larsen, A String model of black hole microstates. Phys. Rev. D 56, 1005–1008 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.M. Maldacena, A. Strominger, E. Witten, Black hole entropy in M theory. JHEP 12, 002 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Strominger, Black hole entropy from near horizon microstates. JHEP 02, 009 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. G. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996)

    Article  ADS  Google Scholar 

  11. R. D’Auria, P. Fré, BPS black-holes in supergravity: duality groups, p-branes, central charges and entropy, in Classical and Quantum Black Holes, ed. by P. Fré, V. Gorini, G. Magli, U. Moschella (IOP Publishing Ltd, 1999), pp. 137–272

    Google Scholar 

  12. L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal black holes in supergravity. Lect. Notes Phys. 737, 661–727 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043–5098 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Bellucci, S. Ferrara, A. Marrani, On some properties of the attractor equations. Phys. Lett. B 635, 172 (2006)

    Google Scholar 

  15. G. Bossard, Extrenal black holes and nilpotent orbits, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09) (Prague, Czech Republic, 2009)

    Google Scholar 

  16. G. Bossard, The extremal black holes of N \(=\) 4 supergravity from so(8,2+n) nilpotent orbits. Gen. Rel. Grav. 42, 539–565 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. G. Bossard, H. Nicolai, Multi-black holes from nilpotent lie algebra orbits. Gen. Rel. Grav. 42, 509 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G. Bossard, H. Nicolai, K. Stelle, Universal bps structure of stationary supergravity solutions. JHEP 0907, 003 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Bossard, C. Ruef, Interacting non-BPS black holes. Gen. Rel. Grav. 44, 21 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Ceresole, S. Ferrara, A. Marrani, Small N \(=\) 2 extremal black holes in special geometry. Phys. Lett. B 693, 366–372 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Giryavets, New attractors and area codes. JHEP 0603, 020 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. K. Goldstein, N. Iizuka, R.P. Jena, S.P. Trivedi, Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Kallosh, JHEP. New attractors 0512, 022 (2005)

    Google Scholar 

  24. R. Kallosh, N. Sivanandam, M. Soroush, The non-BPS black hole attractor equation. JHEP 0603, 060 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Tripathy, S. Trivedi, Non-supersymmetric attractors in string theory. JHEP 0603, 022 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W. Chemissany, J. Rosseel, M. Trigiante, T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories. Nucl. Phys. B 830, 391 (2010)

    Google Scholar 

  27. W. Chemissany, P. Fre, J. Rosseel, A. Sorin, M. Trigiante, T. Van Riet, Black holes in supergravity and integrability. JHEP 2010, 080 (1009)

    Article  MATH  Google Scholar 

  28. W. Chemissany, P. Fré, A. Sorin, The integration algorithm of lax equation for both generic lax matrices and generic initial conditions. Nucl. Phys. B 833, 220 (2010)

    Google Scholar 

  29. P. Fré, A. Sorin, The Integration Algorithm for Nilpotent Orbits of \(g/h^\star \) Lax Systems: for Extrenal Black Holes (2009)

    Google Scholar 

  30. P. Fré, A. Sorin, Supergravity black holes and billiards and liouville integrable structure of dual borel algebras. JHEP 03, 066 (2010)

    Article  ADS  MATH  Google Scholar 

  31. P. Frè, A. Sorin, M. Trigiante, Black Hole Nilpotent Orbits and Tits Satake Universality Classes (2011)

    Google Scholar 

  32. P. Frè, A. Sorin, M. Trigiante, Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits. JHEP 1204, 015 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. P. Fré, A.S. Sorin, Integrability of supergravity billiards and the generalized Toda lattice equation. Nucl. Phys. B 733, 334–355 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, First order flows for N \(=\) 2 extremal black holes and duality invariants. Nucl. Phys. B 824, 239–253 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. P. G. Fré, Gravity, a Geometrical Course, vols. 1, 2 (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  36. D.H. Collingwood, W.McGovern, Nilpotent Orbits in Semisimple Lie Algebras (Van Nostrand Reinhold, 1993)

    Google Scholar 

  37. S. Kim, J. Lindman, J. Hörnlund, J. Palmkvist, A. Virmani, Extremal solutions of the \(s^3\) model and nilpotent \(g_{2(2)}\) orbits. JHEP 2010, 072 (1008)

    Article  MATH  Google Scholar 

  38. G. Bossard, Octonionic black holes. JHEP 05, 113 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Behrndt, D. Lust, W. Sabra, Stationary solutions of n \(=\) 2 supergravity. Nucl. Phys. B 510, 264–288 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Giuseppe Fré .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fré, P.G. (2018). Black Holes and Nilpotent Orbits. In: Advances in Geometry and Lie Algebras from Supergravity. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74491-9_6

Download citation

Publish with us

Policies and ethics