Skip to main content

Transient Excitation Suppression Capabilities of Electromagnetic Actuators in Rotor-Shaft Systems

  • Conference paper
  • First Online:
Structural Health Monitoring, Photogrammetry & DIC, Volume 6

Abstract

Impulsive forces cause sudden variations in dynamic systems and may result in fatal damage to the system especially in turbines where the whole system is enclosed inside a casing with very small clearance between the blades and the casing. Electromagnetic actuators have been known to apply non-contact electromagnetic force on a rotor- shaft section preventing rotor-shaft vibrations. This work attempts to investigate the comparison of two different control laws in controlling the vibrations caused by noises such as sudden flow rate change, blade loss, or excitations occurring due to seismic vibrations. A rotor-shaft system is developed within a simulation framework which includes an actuator placed away from the bearings. Literature shows the use of conventional PD (Proportional Derivative) control law which is equivalent to a 2-element support model. This work novels the 3-element viscoelastic support model, which is found to offer better vibration mitigation abilities in terms of controlling transient excitations. Preliminary theoretical simulation using linearized expression of electromagnetic force and the accompanying example show good reduction in transverse response amplitude, postponement of instability caused by viscous form of rotor internal damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lund, J.W.: The stability of an elastic rotor in flexible damped supports. ASME J. Appl. Mech. 32, 911–922 (1965)

    Article  Google Scholar 

  2. Dutt, J.K., Nakra, B.C.: Stability of rotor shaft systems with viscoelastic support. J. Sound Vib. 153(1), 89–96 (1992)

    Article  Google Scholar 

  3. Dutt, J.K., Nakra, B.C.: Stability characteristics of rotating systems with journal bearings on viscoelastic supports. Mech. Mach. Theory. 31(6), 771–779 (1996)

    Article  Google Scholar 

  4. Dutt, J.K., Toi, T.: Rotor vibration reduction with polymeric sectors. J. Sound Vib. 262(4), 769–793 (2003)

    Article  Google Scholar 

  5. Schweitzer, G., Maslen, E.H., Bleuler, H., Cole, M., Keogh, P., Larsonneur, R., Nordmann, R., Okada, Y., Traxler, A.: Magnetic Bearings: Theory, Design and Application to Rotating Machinery, pp. 167–220, 251–290, 319–380. Springer (2009)

    Google Scholar 

  6. Das, A.S., Dutt, J.K., Nighil, M.C., Irretier, H.: Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters. Mech. Mach. Theory. 43, 1295–1316 (2009)

    Article  Google Scholar 

  7. Lalanne, M., Ferraris, G.: Rotor Dynamics Prediction in Engineering, 2nd edn, pp. 125–132. Wiley (1998)

    Google Scholar 

  8. Shekhar, S., Sharma, N., Roy, H.K., Das, A.S., Dutt, J.K.: Vibration control of rotor shaft systems using electromagnetic actuator. In: Proceedings of 9th International Conference on Rotor Dynamics, IFTOMM, Milan, Sept 2014

    Google Scholar 

  9. Kirk, R.G., Hibner, D.H.: A note on blade loss dynamics of rotor-bearing systems. ASME J. Eng. Ind. 98, 497–504 (1976)

    Article  Google Scholar 

  10. Alam, M., Nelson, H.D.: A blade loss response spectrum for flexible rotor dynamics. ASME J. Eng. Gas Turbine Power. 107, 197–504 (1985)

    Article  Google Scholar 

  11. Das, A.S., Dutt, J.K., Irretier, H.: Active control of a Jeffcott rotor vibration due to blade loss. In: Proceedings of 9th International Conference on Vibrations in Rotating Machinery, IMechE, Exeter, Sept 2008

    Google Scholar 

  12. Sharma, P., Gupta, S., Das, A.S., Dutt, J.K.: Active vibration control of flexible rotor-shaft system subject to earthquake. In: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE 2012, Houston, 9–15 Nov 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

System of Eq. (24.7) has been derived using conservation of linear and angular momentum in each direction [11]. Of course, there is no change in linear velocity along the axis of the rotor. That can be assumed to be constant and equal to zero. All the factors are defined as follows:

$$ \left[\begin{array}{ccccc}{\mathrm{a}}_{11}& {\mathrm{a}}_{12}& {\mathrm{a}}_{13}& {\mathrm{a}}_{14}& {\mathrm{a}}_{15}\\ {}{\mathrm{a}}_{21}& {\mathrm{a}}_{22}& 0& 0& {\mathrm{a}}_{25}\\ {}{\mathrm{a}}_{31}& 0& {\mathrm{a}}_{31}& {\mathrm{a}}_{34}& 0\\ {}0& 0& 0& 1& 0\\ {}0& 0& 0& 0& 1\end{array}\right]\left\{\begin{array}{c}{\Omega}_{\mathrm{f}}\\ {}{\dot{\mathrm{u}}}_{\mathrm{f}}\\ {}{\dot{\mathrm{v}}}_{\mathrm{f}}\\ {}{\dot{\Phi}}_{\mathrm{f}}\\ {}{\dot{\upvarphi}}_{\mathrm{f}}\end{array}\right\}=\left\{\begin{array}{c}{\mathrm{b}}_1\\ {}{\mathrm{b}}_2\\ {}{\mathrm{b}}_3\\ {}{\mathrm{b}}_4\\ {}{\mathrm{b}}_5\end{array}\right\} $$

where,

$$ {a}_{11}={J}_{pf}+\left(m-{m}_b\right){e}^{\prime}\left\{r-e\cos \left({\gamma}^{\prime }-\gamma \right)\right\} $$
$$ {a}_{12}=\left(m-{m}_b\right)\left\{{e}^{\prime}\sin \left(\varOmega t+{\gamma}^{\prime}\right)-e\sin \left(\varOmega t+\gamma \right)\right\} $$
$$ {a}_{13}=\left(m-{m}_b\right)\left\{{e}^{\prime}\cos \left(\varOmega t+{\gamma}^{\prime}\right)-e\cos \left(\varOmega t+\gamma \right)\right\} $$
$$ {a}_{14}={e}^{\prime}\sin \phi $$
$$ {a}_{15}={e}^{\prime}\sin \psi $$
$$ {a}_{21}=-{e}^{\prime}\sin \left(\varOmega t+{\gamma}^{\prime}\right) $$
$$ {a}_{31}={e}_f\cos \left(\varOmega t+{\gamma}_f\right) $$
$$ {\displaystyle \begin{array}{c}{b}_1=\varOmega \left[{J}_p+m\left(r-e\right)r+{m}_b{r}_b\left\{{r}_b-e\cos \left({\gamma}_b-\gamma \right)\right\}\right]\\[8pt] {}+{m}_b\left\{\left({r}_b\sin \left(\varOmega t+{\gamma}_b\right)-e\sin \left(\varOmega t+{\gamma}_b\right)\right)\right\}\dot{y}\\[8pt] {}-{m}_b\left\{\left({r}_b\cos \left(\varOmega t+{\gamma}_b\right)-e\cos \left(\varOmega t+{\gamma}_b\right)\right)\right\}\dot{z}\end{array}} $$
$$ {b}_2=\dot{u}+\frac{\varOmega }{m-{m}_b}\left[{m}_b{r}_b\sin \left(\varOmega t+{\gamma}_b\right)-{m}_e\sin \left(\varOmega t+\gamma \right)\right] $$
$$ {b}_3=\dot{v}-\frac{\varOmega }{m-{m}_b}\left[{m}_b{r}_b\cos \left(\varOmega t+{\gamma}_b\right)-{m}_e\cos \left(\varOmega t+\gamma \right)\right] $$
$$ {b}_4=\dot{\phi} $$
$$ {b}_5=\dot{\psi} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, N., Shekhar, S., Dutt, J.K. (2019). Transient Excitation Suppression Capabilities of Electromagnetic Actuators in Rotor-Shaft Systems. In: Niezrecki, C., Baqersad, J. (eds) Structural Health Monitoring, Photogrammetry & DIC, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74476-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74476-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74475-9

  • Online ISBN: 978-3-319-74476-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics