Skip to main content

Detectors in Active Interrogation

  • Chapter
  • First Online:
Active Interrogation in Nuclear Security

Abstract

Similar to passive measurements, active interrogation relies on the use of radiation detectors to measure and isolate the characteristic signatures of sought materials. While almost all advances in radiation detectors used in passive measurements can also improve the performance of active interrogation systems, there are some key differences in the desired characteristics between the two types of measurements that affect the choice and optimization of the detectors. This chapter brings up those distinctions while also providing a broad introduction to various detector types that could find use in active interrogation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    k eff values calculated using MCNP6 KCODE.

References

  1. T. Gozani, IEEE Trans. Nucl. Sci. 56(3), 736 (2009). https://doi.org/10.1109/TNS.2009.2015309

  2. P.E. Vanier, L. Forman, D.R. Norman, AIP Conf. Proc. 1099(1), 583 (2009). http://aip.scitation.org/doi/abs/10.1063/1.3120104

  3. D. Reilly, N. Ensslin, H.J. Smith, Passive nondestructive assay of nuclear materials. Technical Report, LA-UR-90-732, Los Alamos National Laboratory (1991)

    Google Scholar 

  4. M. Chadwick, M. Herman, P. Obložinský, M. Dunn, Y. Danon, A. Kahler, D. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D. Brown, R. Capote, A. Carlson, Y. Cho, H. Derrien, K. Guber, G. Hale, S. Hoblit, S. Holloway, T. Johnson, T. Kawano, B. Kiedrowski, H. Kim, S. Kunieda, N. Larson, L. Leal, J. Lestone, R. Little, E. McCutchan, R. MacFarlane, M. MacInnes, C. Mattoon, R. McKnight, S. Mughabghab, G. Nobre, G. Palmiotti, A. Palumbo, M. Pigni, V. Pronyaev, R. Sayer, A. Sonzogni, N. Summers, P. Talou, I. Thompson, A. Trkov, R. Vogt, S. van der Marck, A. Wallner, M. White, D. Wiarda, P. Young, Nucl. Data Sheets 112(12), 2887 (2011). http://dx.doi.org/10.1016/j.nds.2011.11.002. http://www.sciencedirect.com/science/article/pii/S009037521100113X. Special Issue on ENDF/B-VII.1 Library

  5. Iaea, evaluated nuclear data file (endf). https://www-nds.iaea.org/exfor/endf.htm

  6. W.R. Mills, R.L. Caldwell Jr., I.L. Morgan, Rev. Sci. Instrum. 33(8), 866 (1962). http://dx.doi.org/10.1063/1.1717994

  7. A. Tomanin, P. Peerani, G. Janssens-Maenhout, Nucl. Instrum. Methods Phys. Res. Sect. A 700, 81 (2013). http://dx.doi.org/10.1016/j.nima.2012.10.002. http://www.sciencedirect.com/science/article/pii/S0168900212011254

  8. E.H. Seabury, D.L. Chichester, in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2009), pp. 710–712. https://doi.org/10.1109/NSSMIC.2009.5402101

  9. R.C. Runkle, D.L. Chichester, S.J. Thompson, Nucl. Instrum. Methods Phys. Res. Sect. A 663(1), 75 (2012)

    Google Scholar 

  10. A.C. Trahan, Utilization of the differential die-away self-interrogation technique for characterization and verification of spent nuclear fuel. Ph.D. thesis, University of Michigan (2016)

    Google Scholar 

  11. K.A. Jordan, J. Vujic, T. Gozani, Nucl. Instrum. Methods Phys. Res. Sect. A 579(1), 407 (2007). http://dx.doi.org/10.1016/j.nima.2007.04.089. http://www.sciencedirect.com/science/article/pii/S0168900207006638. Proceedings of the 11th Symposium on Radiation Measurements and Applications

  12. D. Henzlova, R. Kouzes, R. McElroy, P. Peerani, M. Aspinall, K. Baird, A. Bakel, M. Borella, M. Bourne, L. Bourva, F. Cave, R. Chandra, D. Chernikova, S. Croft, G. Dermody, A. Dougan, J. Ely, E. Fanchini, P. Finocchiaro, V. Gavron, M. Kureta, K. Ianakiev, K. Ishiyama, T. Lee, C. Martin, K. McKinny, H. Menlove, C. Orton, A. Pappalardo, B. Pedersen, D. Peranteau, R. Plenteda, S. Pozzi, M. Schear, M. Seya, E. Siciliano, S. Stave, L. Sun, M. Swinhoe, H. Tagziria, S. Vaccaro, J. Takamine, A.L. Weber, T. Yamaguchi, H. Zhu, Current status of helium-3 alternative technologies for nuclear safeguards. Technical Report LA-UR–15-21201, Los Alamos National Laboratory (2015)

    Google Scholar 

  13. R.T. Kouzes, A.T. Lintereur, E.R. Siciliano, Nucl. Instrum. Methods Phys. Res. Sect. A 784, 172 (2015). http://dx.doi.org/10.1016/j.nima.2014.10.046. http://www.sciencedirect.com/science/article/pii/S0168900214012030. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

  14. R.T. Kouzes, J.H. Ely, L.E. Erikson, W.J. Kernan, A.T. Lintereur, E.R. Siciliano, D.L. Stephens, D.C. Stromswold, R.M.V. Ginhoven, M.L. Woodring, Nucl. Instrum. Methods Phys. Res. Sect. A 623(3), 1035 (2010). http://dx.doi.org/10.1016/j.nima.2010.08.021. http://www.sciencedirect.com/science/article/pii/S016890021001795X

  15. A. Lintereur, K. Conlin, J. Ely, L. Erikson, R. Kouzes, E. Siciliano, D. Stromswold, M. Woodring, Nucl. Instrum. Methods Phys. Res. Sect. A 652(1), 347 (2011). http://dx.doi.org/10.1016/j.nima.2010.10.040. http://www.sciencedirect.com/science/article/pii/S0168900210022795. Symposium on Radiation Measurements and Applications (SORMA) XII 2010

  16. A.J. Stokes, T.J. Meal, J.E. Myers, IEEE Trans. Nucl. Sci. 13(1), 630 (1966). https://doi.org/10.1109/TNS.1966.4324024

  17. M. Schear, H. Menlove, L. Evans, S. Tobin, S. Croft, Spent fuel characterization using the differential die-away self-interrogation technique. Technical Report LA-UR-11-03423, Los Alamos National Laboratory (2011)

    Google Scholar 

  18. N. Ensslin, W. Harker, M. Crick, D. Langner, M. Pickrell, J. Stewart, Application guide to neutron multiplicity counting. Technical Report LA-13422-M, Los Alamos National Laboratory (1998)

    Google Scholar 

  19. W. Hage, D. Cifarelli, Nucl. Instrum. Methods Phys. Res. Sect. A 236(1), 165 (1985). http://dx.doi.org/10.1016/0168-9002(85)90142-1. http://www.sciencedirect.com/science/article/pii/0168900285901421

  20. D. Cifarelli, W. Hage, Nucl. Instrum. Methods Phys. Res. Sect. A 251(3), 550 (1986). http://dx.doi.org/10.1016/0168-9002(86)90651-0. http://www.sciencedirect.com/science/article/pii/0168900286906510

  21. M.M. Ferrer, P. Peerani, M.R. Looman, L. Dechamp, Nucl. Instrum. Methods Phys. Res. Sect. A 574(2), 297 (2007). http://dx.doi.org/10.1016/j.nima.2007.01.167. http://www.sciencedirect.com/science/article/pii/S0168900207001696

  22. B. Goddard, S. Croft, Nucl. Instrum. Methods Phys. Res. Sect. A 712, 147 (2013). http://dx.doi.org/10.1016/j.nima.2013.02.007. http://www.sciencedirect.com/science/article/pii/S0168900213001836

  23. R. Weinmann-Smith, D. Beddingfield, A. Enqvist, M. Swinhoe, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 17 (2017). http://dx.doi.org/10.1016/j.nima.2017.02.083. http://www.sciencedirect.com/science/article/pii/S0168900217303042

  24. A.C. Kaplan, V. Henzl, H.O. Menlove, M.T. Swinhoe, A.P. Belian, M. Flaska, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 757, 20 (2014). http://dx.doi.org/10.1016/j.nima.2014.04.023. http://www.sciencedirect.com/science/article/pii/S0168900214004197

  25. A.C. Kaplan, V. Henzl, H.O. Menlove, M.T. Swinhoe, A.P. Belian, M. Flaska, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 764, 347 (2014). http://dx.doi.org/10.1016/j.nima.2014.08.003. http://www.sciencedirect.com/science/article/pii/S0168900214009231

  26. F. Brooks, Nucl. Instrum. Methods 162(1), 477 (1979). http://dx.doi.org/10.1016/0029-554X(79)90729-8. http://www.sciencedirect.com/science/article/pii/0029554X79907298

  27. A. Comrie, A. Buffler, F. Smit, H. Wörtche, Nucl. Instrum. Methods Phys. Res. Sect. A 772, 43 (2015). http://dx.doi.org/10.1016/j.nima.2014.10.058. http://www.sciencedirect.com/science/article/pii/S0168900214012157

  28. T. Alharbi, Radiat. Phys. Chem. 106, 50 (2015). http://dx.doi.org/10.1016/j.radphyschem.2014.06.031. http://www.sciencedirect.com/science/article/pii/S0969806X14002874

  29. G.H. Bertrand, M. Hamel, S. Normand, F. Sguerra, Nucl. Instrum. Methods Phys. Res. Sect. A 776, 114 (2015). http://dx.doi.org/10.1016/j.nima.2014.12.024. http://www.sciencedirect.com/science/article/pii/S016890021401465X

  30. N. Zaitseva, A. Glenn, L. Carman, H.P. Martinez, R. Hatarik, H. Klapper, S. Payne, Nucl. Instrum. Methods Phys. Res. Sect. A 789, 8 (2015). http://dx.doi.org/10.1016/j.nima.2015.03.090. http://www.sciencedirect.com/science/article/pii/S0168900215004635

  31. T. Yanagida, K. Watanabe, Y. Fujimoto, Nucl. Instrum. Methods Phys. Res. Sect. A 784, 111 (2015). https://doi.org/10.1016/j.nima.2014.12.031. http://www.sciencedirect.com/science/article/pii/S0168900214014739. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

  32. M. Bourne, S. Clarke, N. Adamowicz, S. Pozzi, N. Zaitseva, L. Carman, Nucl. Instrum. Methods Phys. Res. Sect. A 806, 348 (2016). http://dx.doi.org/10.1016/j.nima.2015.10.025. http://www.sciencedirect.com/science/article/pii/S0168900215012322

  33. R. Chandra, G. Davatz, H. Friederich, U. Gendotti, D. Murer, J. Instrum. 7, C03035 (2012). https://doi.org/10.1088/1748-0221/7/03/C03035

  34. R. Jebali, J. Scherzinger, J. Annand, R. Chandra, G. Davatz, K. Fissum, H. Friederich, U. Gendotti, R. Hall-Wilton, E. HÃ¥kansson, K. Kanaki, M. Lundin, D. Murer, B. Nilsson, A. Rosborg, H. Svensson, Nucl. Instrum. Methods Phys. Res. Sect. A 794, 102 (2015). http://dx.doi.org/10.1016/j.nima.2015.04.058. http://www.sciencedirect.com/science/article/pii/S0168900215005690

  35. T. Gozani, J. Stevenson, M.J. King, Nucl. Instrum. Methods Phys. Res. Sect. A 652(1), 334 (2011). http://dx.doi.org/10.1016/j.nima.2011.01.029. http://www.sciencedirect.com/science/article/pii/S0168900211000805. Symposium on Radiation Measurements and Applications (SORMA) XII 2010

  36. D.A. Glaser, Phys. Rev. 87, 665 (1952). 10.1103/PhysRev.87.665

    Google Scholar 

  37. R.E. Apfel, Nucl. Instrum. Methods 162(1), 603 (1979). http://dx.doi.org/10.1016/0029-554X(79)90735-3. http://www.sciencedirect.com/science/article/pii/0029554X79907353

  38. H. Ing, H. Birnboim, Nucl. Tracks Radiat. Meas. (1982) 8(1), 285 (1984). http://dx.doi.org/10.1016/0735-245X(84)90106-6. http://www.sciencedirect.com/science/article/pii/0735245X84901066. Special Volume: Solid State Nuclear Track Detectors

  39. Passive neutron dosimetry systems — Part 1: performance and test requirements for personal dosimetry. Technical Report ISO 21909-1, International Organization for Standardization (2015)

    Google Scholar 

  40. Personnel neutron dosimeters (neutron energies less than 20 mev). Technical Reports ANSI/HPS N13.52, American National Standards Institute (1999)

    Google Scholar 

  41. F. d’Errico, Nucl. Instrum. Methods Phys. Res. Sect. B 184(1), 229 (2001). http://dx.doi.org/10.1016/S0168-583X(01)00730-3. http://www.sciencedirect.com/science/article/pii/S0168583X01007303. Advanced Topics in Solid State Dosimetry

  42. F. d’Errico, A.D. Fulvio, Radiat. Meas. 46(12), 1690 (2011). http://dx.doi.org/10.1016/j.radmeas.2011.10.017. http://www.sciencedirect.com/science/article/pii/S1350448711004999. Proceedings of the 16th Solid State Dosimetry Conference, September 19–24, Sydney

  43. F. d’Errico, A.D. Fulvio, M. Maryañski, S. Selici, M. Torrigiani, Radiat. Meas. 43(2), 432 (2008). http://dx.doi.org/10.1016/j.radmeas.2008.02.011. http://www.sciencedirect.com/science/article/pii/S1350448708000590. Proceedings of the 15th Solid State Dosimetry (SSD15)

  44. E. Kaplan, J. Lemley, T. Tsang, L. Milian. Real-time self-networking radiation detector apparatus (2007). http://www.google.com.pg/patents/US7230250. US Patent 7,230,250

  45. G. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010). https://books.google.com/books?id=4vTJ7UDel5IC

  46. J. Glodo, R. Hawrami, K. Shah, J. Cryst. Growth 379, 73 (2013). http://dx.doi.org/10.1016/j.jcrysgro.2013.03.023. http://www.sciencedirect.com/science/article/pii/S0022024813002108. Compound Semiconductors and Scintillators for Radiation Detection Applications: A Special Tribute to the Research of Michael Schieber

  47. N. D’Olympia, P. Chowdhury, C. Lister, J. Glodo, R. Hawrami, K. Shah, U. Shirwadkar, Nucl. Instrum. Methods Phys. Res. Sect. A 714, 121 (2013). http://dx.doi.org/10.1016/j.nima.2013.02.043. http://www.sciencedirect.com/science/article/pii/S0168900213002349

  48. T. Aoyama, K. Honda, C. Mori, K. Kudo, N. Takeda, Nucl. Instrum. Methods Phys. Res. Sect. A 333(2), 492 (1993). http://dx.doi.org/10.1016/0168-9002(93)91197-U. http://www.sciencedirect.com/science/article/pii/016890029391197U

  49. S.D. Jastaniah, P.J. Sellin, IEEE Trans. Nucl. Sci. 49(4), 1824 (2002). https://doi.org/10.1109/TNS.2002.801674

  50. M. Flaska, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 599(2), 221 (2009). http://dx.doi.org/10.1016/j.nima.2008.10.030. http://www.sciencedirect.com/science/article/pii/S0168900208015465

  51. S. Hunt, C. Iliadis, R. Longland, Nucl. Instrum. Methods Phys. Res. Sect. A 811, 108 (2016). http://dx.doi.org/10.1016/j.nima.2015.12.001. http://www.sciencedirect.com/science/article/pii/S0168900215015508

  52. W. Feldman, G. Auchampaugh, R. Byrd, Nucl. Instrum. Methods Phys. Res. Sect. A 306(1), 350 (1991). http://dx.doi.org/10.1016/0168-9002(91)90342-N. http://www.sciencedirect.com/science/article/pii/016890029190342N

  53. E. Kamykowski, Nucl. Instrum. Methods Phys. Res. Sect. A 317(3), 559 (1992). http://dx.doi.org/10.1016/0168-9002(92)91002-Q. http://www.sciencedirect.com/science/article/pii/016890029291002Q

  54. P. Holm, K. Peräjärvi, S. Ristkari, T. Siiskonen, H. Toivonen, Nucl. Instrum. Methods Phys. Res. Sect. A 751, 48 (2014). http://dx.doi.org/10.1016/j.nima.2014.03.021. http://www.sciencedirect.com/science/article/pii/S0168900214003040

  55. J.B. Czirr, G.L. Jensen, Nucl. Instrum. Methods Phys. Res. Sect. A 349(2), 532 (1994). http://dx.doi.org/10.1016/0168-9002(94)91222-X. http://www.sciencedirect.com/science/article/pii/016890029491222X

  56. G.L. Jensen, J. Wang, J.B. Czirr, Nucl. Instrum. Methods Phys. Res. Sect. A 333(2), 474 (1993). http://dx.doi.org/10.1016/0168-9002(93)91195-S. http://www.sciencedirect.com/science/article/pii/016890029391195S

  57. K. Wilhelm, J. Nattress, I. Jovanovic, Nucl. Instrum. Methods Phys. Res. Sect. A 842, 54 (2017). http://dx.doi.org/10.1016/j.nima.2016.10.042. http://www.sciencedirect.com/science/article/pii/S0168900216310865

  58. J. Czirr, Nucl. Instrum. Methods 108(3), 613 (1973). http://dx.doi.org/10.1016/0029-554X(73)90549-1. http://www.sciencedirect.com/science/article/pii/0029554X73905491

  59. J. Czirr, D.B. Merrill, D. Buehler, T.K. McKnight, J.L. Carroll, T. Abbott, E. Wilcox, Nucl. Instrum. Methods Phys. Res. Sect. A 476(1), 309 (2002). http://dx.doi.org/10.1016/S0168-9002(01)01445-0. http://www.sciencedirect.com/science/article/pii/S0168900201014450. International Workshop on Neutron Field Spectrometry in Science, Technology and Radiation Protection

  60. M. Flaska, S. Pozzi, J. Czirr, W. Ulbricht, in Symposium on Radiation Measurements Applications, Berkeley, California, 2008

    Google Scholar 

  61. M. Mayer, J. Nattress, C. Trivelpiece, I. Jovanovic, Nucl. Instrum. Methods Phys. Res. Sect. A 784(Supplement C), 168 (2015). https://doi.org/10.1016/j.nima.2014.09.023. http://www.sciencedirect.com/science/article/pii/S0168900214010249. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

  62. G. Rich, K. Kazkaz, H. Martinez, T. Gushue, Nucl. Instrum. Methods Phys. Res. Sect. A 794(Supplement C), 15 (2015). https://doi.org/10.1016/j.nima.2015.05.004. http://www.sciencedirect.com/science/article/pii/S0168900215006130

  63. M. Mayer, J. Nattress, V. Kukharev, A. Foster, A. Meddeb, C. Trivelpiece, Z. Ounaies, I. Jovanovic, Nucl. Instrum. Methods Phys. Res. Sect. A 785(Supplement C), 117 (2015). https://doi.org/10.1016/j.nima.2015.03.014. http://www.sciencedirect.com/science/article/pii/S0168900215003083

  64. J. Nattress, M. Mayer, A. Foster, A.B. Meddeb, C. Trivelpiece, Z. Ounaies, I. Jovanovic, IEEE Trans. Nucl. Sci. 63(2), 1227 (2016). https://doi.org/10.1109/TNS.2016.2537761

  65. T. Shi, J. Nattress, M. Mayer, M.W. Lin, I. Jovanovic, Nucl. Instrum. Methods Phys. Res. Sect. A 839(Supplement C), 86 (2016). https://doi.org/10.1016/j.nima.2016.09.041. http://www.sciencedirect.com/science/article/pii/S0168900216309809

  66. M. Sharma, J. Nattress, K. Wilhelm, I. Jovanovic, Nucl. Instrum. Methods Phys. Res. Sect. A 857(Supplement C), 75 (2017). https://doi.org/10.1016/j.nima.2017.03.019. http://www.sciencedirect.com/science/article/pii/S016890021730356X

  67. P. Cherenkov, Dokl. Akad. Nauk SSSR 2, 451 (1934)

    Google Scholar 

  68. I. Frank, I. Tamm, Dokl. Akad. Nauk SSSR 14, 109 (1937)

    Google Scholar 

  69. B. Sowerby, Nucl. Instrum. Meth. 97, 145 (1971)

    Google Scholar 

  70. G.M. Hale, M.R. Querry, Appl. Opt. 12(3), 555 (1973)

    Google Scholar 

  71. R.C. Smith, K.S. Baker, Appl. Opt. 20(2), 177 (1981)

    Google Scholar 

  72. D. Websdale, Nucl. Instrum. Meth. A 595(1), 12 (2008). http://dx.doi.org/10.1016/j.nima.2008.07.040. http://www.sciencedirect.com/science/article/pii/S0168900208009303

  73. P.B. Rose, A.S. Erickson, M. Mayer, J. Nattress, I. Jovanovic, Sci. Rep. 6, 24388 EP (2016). http://dx.doi.org/10.1038/srep24388

  74. P. Rose Jr, A. Erickson, Nucl. Instrum. Methods A 799, 99 (2015)

    Google Scholar 

  75. P.B. Rose Jr., A.S. Erickson, J. Appl. Phys. 120(6), 064903 (2016). http://dx.doi.org/10.1063/1.4960778

  76. S. Clarke, Analysis of prompt emissions following photoninterrogation of fissionable material. Ph.D. thesis, Purdue University (2007)

    Google Scholar 

  77. M. Mayer, J. Nattress, I. Jovanovic, Appl. Phys. Lett. 108(26), 264102 (2016). https://doi.org/10.1063/1.4955051

  78. A. Favalli, F. Aymond, J.S. Bridgewater, S. Croft, O. Deppert, M.J. Devlin, K. Falk, J.C. Fernandez, D.C. Gautier, M.A. Gonzales et al., Nuclear material detection by one-short-pulse-laser-driven neutron source. Technical Report, Los Alamos National Laboratory (LANL), Los Alamos, NM (US) (2015)

    Google Scholar 

  79. M.T. Kinlaw, A.W. Hunt, Appl. Phys. Lett. 86(25), 254104 (2005). https://doi.org/10.1063/1.1953874

  80. F. Sutanto, J. Nattress, I. Jovanovic, J. Appl. Phys. 122(5), 054901 (2017). https://doi.org/10.1063/1.4986382

  81. A. Poitrasson-Rivière, M.C. Hamel, J.K. Polack, M. Flaska, S.D. Clarke, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 760, 40 (2014). http://dx.doi.org/10.1016/j.nima.2014.05.056. http://www.sciencedirect.com/science/article/pii/S0168900214005889

  82. A. Poitrasson-Rivière, J.K. Polack, M.C. Hamel, D.D. Klemm, K. Ito, A.T. McSpaden, M. Flaska, S.D. Clarke, S.A. Pozzi, A. Tomanin, P. Peerani, Nucl. Instrum. Methods Phys. Res. Sect. A 797, 278 (2015). https://doi.org/10.1016/j.nima.2015.06.045. http://www.sciencedirect.com/science/article/pii/S0168900215007950

  83. D. Herzo, R. Koga, W. Millard, S. Moon, J. Ryan, R. Wilson, A. Zych, R. White, Nucl. Instrum. Methods 123(3), 583 (1975). http://dx.doi.org/10.1016/0029-554X(75)90215-3. http://www.sciencedirect.com/science/article/pii/0029554X75902153

  84. P.E. Vanier, L. Forman, in IEEE Nuclear Science Symposium Conference Record, 2005, vol. 1 (2005), vol. 1, pp. 116–119. http://dx.doi.org/10.1109/NSSMIC.2005.1596219

  85. N. Mascarenhas, J. Brennan, K. Krenz, J. Lund, P. Marleau, J. Rasmussen, J. Ryan, J. Macri, in 2006 IEEE Nuclear Science Symposium Conference Record, vol. 1, pp. 185–188 (2006). http://dx.doi.org/10.1109/NSSMIC.2006.356135

  86. N. Mascarenhas, J. Brennan, K. Krenz, P. Marleau, S. Mrowka, IEEE Trans. Nucl. Sci. 56(3), 1269 (2009). http://dx.doi.org/10.1109/TNS.2009.2016659

  87. S.J. Wilderman, N.H. Clinthorne, J.A. Fessler, W.L. Rogers, in 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), vol. 3, pp. 1716–1720 (1998). http://dx.doi.org/10.1109/NSSMIC.1998.773871

  88. J. Polack, A maximum-likelihood approach for localizing and characterizing special nuclear material with a dual-particle imager. Ph.D. thesis, University of Michigan (2016)

    Google Scholar 

  89. M. Hamel, J. Polack, A. Poitrasson-Rivière, M. Flaska, S. Clarke, S. Pozzi, A. Tomanin, P. Peerani, Nucl. Instrum. Methods Phys. Res. Sect. A 810, 120 (2016). http://dx.doi.org/10.1016/j.nima.2015.12.002. http://www.sciencedirect.com/science/article/pii/S016890021501551X

  90. M. Hamel, J. Polack, A. Poitrasson-Rivière, S. Clarke, S. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 841, 24 (2017). http://dx.doi.org/10.1016/j.nima.2016.10.004. http://www.sciencedirect.com/science/article/pii/S0168900216310233

  91. M. Hamel, J. Polack, M. Ruch, M. Marcath, S. Clarke, S. Pozzi, Sci. Rep. (2017). http://dx.doi.org/10.1038/s41598-017-08253-x

  92. S.D. Clarke, M. Flaska, S.A. Pozzi, in 2011 IEEE Nuclear Science Symposium Conference Record (2011), pp. 331–335. http://dx.doi.org/10.1109/NSSMIC.2011.6154511

  93. H.O. Menlove, T.W. Crane, Nucl. Instrum. Methods 152(2), 549 (1978). http://dx.doi.org/10.1016/0029-554X(78)90057-5. http://www.sciencedirect.com/science/article/pii/0029554X78900575

  94. H. Menlove, Description and operation manual for the active well coincidence counter. Technical Report LA-7823-M, Los Alamos Scientific Laboratory (1979)

    Google Scholar 

  95. B. Goddard, W. Charlton, P. Peerani, Nucl. Instrum. Methods Phys. Res. Sect. A 739, 1 (2014). http://dx.doi.org/10.1016/j.nima.2013.11.101. http://www.sciencedirect.com/science/article/pii/S0168900213016665

  96. N. Ensslin, W.H. Geist, M.S. Krick, M.M. Pickrell, Active neutron multiplicity counter. Technical Report LA-UR-07-1403, Los Alamos Scientific Laboratory (2007)

    Google Scholar 

  97. A.P. Simpson, S. Jones, M.J. Clapham, S.A. McElhaney, in 2011 IEEE Nuclear Science Symposium Conference Record (2011), pp. 4853–4857. https://doi.org/10.1109/NSSMIC.2011.6152484

  98. S. Stave, M. Bliss, R. Kouzes, A. Lintereur, S. Robinson, E. Siciliano, L. Wood, Nucl. Instrum. Methods Phys. Res., Sect. A 784, 208 (2015). http://dx.doi.org/10.1016/j.nima.2015.01.039. http://www.sciencedirect.com/science/article/pii/S0168900215000704. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

  99. A.D. Fulvio, T. Shin, T. Jordan, C. Sosa, M. Ruch, S. Clarke, D. Chichester, S. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 855, 92 (2017). http://dx.doi.org/10.1016/j.nima.2017.02.082. http://www.sciencedirect.com/science/article/pii/S0168900217303066

  100. J.L. Dolan, M. Flaska, A. Poitrasson-Riviere, A. Enqvist, P. Peerani, D.L. Chichester, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 763, 565 (2014). http://dx.doi.org/10.1016/j.nima.2014.06.028. http://www.sciencedirect.com/science/article/pii/S0168900214007359

  101. D.L. Chichester, S.J. Thompson, M.T. Kinlaw, J.T. Johnson, J.L. Dolan, M. Flaska, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. Sect. A 784, 448 (2015). http://dx.doi.org/10.1016/j.nima.2014.09.027. http://www.sciencedirect.com/science/article/pii/S0168900214010286. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

  102. E. Garner, L. Machlan, W. Shileds, Certification of uranium isotopic standard reference materials. Technical Report 260, National Bureau of Standards Special Publication (1971)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions to this chapter of the students and research staff in the primary authors’ research groups. This work is based in part upon funding by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534, the Department of Defense, Defense Threat Reduction Agency under contract number HDTRA117C0046, and the Department of Homeland Security, Domestic Nuclear Detection Office, Academic Research Initiative award number 2016-DN-077-ARI106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna S. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pozzi, S.A., Erickson, A.S., Jovanovic, I. (2018). Detectors in Active Interrogation. In: Jovanovic, I., Erickson, A. (eds) Active Interrogation in Nuclear Security. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-74467-4_6

Download citation

Publish with us

Policies and ethics